Skip to main content
Log in

The analyses of the complete mitochondrial genomes of three crabs revealed novel gene rearrangements and phylogenetic relationships of Brachyura

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Brachyura crab is the largest branch of Decapoda crustacean. Phylogenetic relationships within Brachyura remain controversial to be investigated. The mitochondrial genome (mitogenome) is an important molecular marker for studying the phylogenetic relationships of Brachyura.

Methods and results

To understand the phylogeny of Brachyura, the three complete mitogenomes from Charybdis annulata, Leptodius exaratus, and Spider crab were sequenced and annotated. Their full length was 15,747, 15,716, and 16,608 bp long, respectively. The first two crabs both contained 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. However, Spider crab contained 13 PCGs, two rRNA genes, 25 tRNA genes and a control region. The mitogenomes of each of the three crabs exhibited high AT content (67.8%, 69.1%, and 70.8%), with negative AT skews (–0.014, − 0.028, and − 0.017) and GC skews (–0.269, − 0.286, and − 0.341). The gene order of C. annulata was identical to the ancestor of Brachyura. Compared with the ancestor of Brachyura, L. exaratus exhibited the gene rearrangements of Val (V)-rrnS-control region, and Spider crab had the four copies of Lys (K). Phylogenetic analyses indicated that C. annulata belonged to Portunidae family, Portunoidea superfamilies, L. exaratus belonged to Xanthidae family, Xanthoidea superfamilies, and Spider crab belonged to Mithracidae family, Majoidea superfamilies. Phylogenetic analyses showed that the two species (Somanniathelphusa boyangensis and Huananpotamon lichuanense) belonging to the Potamoidea were sister groups to the Thoracotremata, thus supporting the conclusion that Heterotremata is polyphyletic.

Conclusion

The results of this study enriched the crab mitogenome database and enabled us to better understand the phylogenetic relationships of Brachyura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27(8):1767–1780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cameron SL (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol 59:95–117

    Article  CAS  PubMed  Google Scholar 

  3. Zhang DX et al (1995) Evolution and structural conservation of the control region of insect mitochondrial DNA. J Mol Evol 40(4):382–391

    Article  CAS  PubMed  Google Scholar 

  4. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi G et al (2021) The complete mitochondrial genome of the sand bubbler crab scopimera globosa and its phylogenetic position. Genomics 113(1 Pt 2):831–839

    Article  CAS  PubMed  Google Scholar 

  6. Wang Q et al (2021) Insights into the evolution of Brachyura (Crustacea: Decapoda) from mitochondrial sequences and gene order rearrangements. Int J Biol Macromol 170:717–727

    Article  CAS  PubMed  Google Scholar 

  7. Guinot D (1978) Principes d’une classification évolutive des Crustacés decapodes brachyoures. Bull Biol Fr Belg 119:7–20

    Google Scholar 

  8. Hazerli D et al (2022) New insights into the evolution of portunoid swimming crabs (Portunoidea, Heterotremata, Brachyura) and the brachyuran axial skeleton. Front Zool 19(1):24

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mendoza JCE et al (2022) A comprehensive molecular phylogeny of the brachyuran crab superfamily Xanthoidea provides novel insights into its systematics and evolutionary history. Mol Phylogenet Evol 177:107627

    Article  CAS  PubMed  Google Scholar 

  10. Klompmaker AA et al (2015) Spider crabs of the Western Atlantic with special reference to fossil and some modern Mithracidae. PeerJ 3:e1301

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xin ZZ et al (2017) Mitochondrial genome of Helice tientsinensis (Brachyura: Grapsoidea: Varunidae): gene rearrangements and higher-level phylogeny of the Brachyura. Gene 627:307–314

    Article  CAS  PubMed  Google Scholar 

  12. Bernt M et al (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69(2):313–319

    Article  PubMed  Google Scholar 

  13. Tamura K et al (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Perseke M et al (2008) Evolution of mitochondrial gene orders in echinoderms. Mol Phylogenet Evol 47(2):855–864

    Article  CAS  PubMed  Google Scholar 

  15. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41(3):353–358

    Article  CAS  PubMed  Google Scholar 

  16. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Katoh K et al (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14):3059–3066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nguyen LT et al (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274

    Article  CAS  PubMed  Google Scholar 

  19. Ronquist F et al (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rambaut A et al (2015) Tracer v1.6. available at: http://tree.bio.ed.ac.uk/software/tracer

  21. Rambaut A (2015) FigTree v1. 4.2: Tree figure drawing tool. available at: http://ac.uk/software/figtree/

  22. Duan XB et al (2022) The complete mitochondrial genome of Pilumnopeus Makianus (Brachyura: Pilumnidae), novel gene rearrangements, and phylogenetic relationships of Brachyura. Genes (Basel) 13(11):1943

    Article  CAS  PubMed  Google Scholar 

  23. Tang BP et al (2017) Characterisation of the complete mitochondrial genome of Helice wuana (Grapsoidea: Varunidae) and comparison with other Brachyuran crabs. Genomics 110(4):221–230

    Article  Google Scholar 

  24. Ki JS et al (2009) The complete mitogenome of the hydrothermal vent crab Xenograpsus testudinatus (Decapoda, Brachyura) and comparison with brachyuran crabs. Comp Biochem Physiol Part D Genomics Proteomics 4(4):290–299

    Article  PubMed  Google Scholar 

  25. Ma H et al (2013) The complete mitochondrial genome sequence and gene organization of the mud crab (Scylla paramamosain) with phylogenetic consideration. Gene 519(1):120–127

    Article  CAS  PubMed  Google Scholar 

  26. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst and Ecol 25(2):99–120

    Article  Google Scholar 

  27. Fuste JM et al (2010) Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Mol Cell 37(1):67–78

    Article  CAS  PubMed  Google Scholar 

  28. Taanman JW (1999) The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1410(2):103–123

    Article  CAS  PubMed  Google Scholar 

  29. Bailey-Serres J et al (1986) Mitochondrial genome rearrangement leads to extension and relocation of the cytochrome c oxidase subunit I gene in sorghum. Cell 47(4):567–576

    Article  CAS  PubMed  Google Scholar 

  30. Moritz C, Brown WM (1987) Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci U S A 84(20):7183–7187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lavrov DV et al (2002) Complete mtDNA sequences of two millipedes suggest a new model for mitochondrial gene rearrangements: duplication and nonrandom loss. Mol Biol Evol 19(2):163–169

    Article  CAS  PubMed  Google Scholar 

  32. Rokas A et al (2003) Animal mitochondrial DNA recombination revisited. Trends Ecol Evol 18(8):411–417

    Article  Google Scholar 

  33. Cantatore P et al (1987) Duplication and remoulding of tRNA genes during the evolutionary rearrangement of mitochondrial genomes. Nature 329(6142):853–855

    Article  CAS  PubMed  Google Scholar 

  34. Shi G et al (2016) Unusual sequence features and gene rearrangements of primitive crabs revealed by three complete mitochondrial genomes of Dromiacea. Comp Biochem Physiol Part D Genomics Proteomics 20:65–73

    Article  CAS  PubMed  Google Scholar 

  35. Tsang LM et al (2008) Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia. Mol Phylogenet Evol 48(1):359–368

    Article  CAS  PubMed  Google Scholar 

  36. Von Sternberg R, Cumberlidge N (2001) On the heterotreme-thoracotreme distinction in the Eubrachyura de Saint Laurent, 1980 (Decapoda, Brachyura). Crustaceana 74:321–338

    Article  Google Scholar 

  37. Brösing A et al (2007) Phylogenetic analysis of the Brachyura (Crustacea, Decapoda) based on characters of the foregut with establishment of a new taxon. J Zool Syst Evol Res 45:20–32

    Article  Google Scholar 

  38. Ahyong ST et al (2007) Phylogenetics of the brachyuran crabs (Crustacea: Decapoda): the status of Podotremata based on small subunit nuclear ribosomal RNA. Mol Phylogenet Evol 45(2):576–586

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all participants in this study. Special thanks also go to Bo-Ping Tang and Qiu-Ning Liu. They used their expertise to contribute to the preparation of the manuscript and the analysis of the study.

Funding

This study was funded by the Natural Science Research General Program of Jiangsu Provincial Higher Education Institutions (21KJA240003), the Natural Science Foundation of Jiangsu Province (BE2020673), the National Key R&D Program of China (2019YFD0900404-05), the National Natural Science Foundation of China (32070526), the Qing Lan Project of Jiangsu Province, and the “Outstanding Young Talents” of YCTU, the Natural Science Foundation of Shandong Province (ZR2022QC250), the Special Support Program of Qingdao Agricultural University awarded to ZZ Xin.

Author information

Authors and Affiliations

Authors

Contributions

Zhao-Zhe Xin: Conceptualization, Methodology, Formal analysis, Investigation, Data Curation, Writing-Original Draft, Writing-Review and Editing, Sheng Tang and Xiang Lu: Formal analysis, Investigation, Data Curation, Hua-Bin Zhang, Dai-Zhen Zhang and Gang Wang: Investigation, Data Curation, Bo-Ping Tang and Qiu-Ning Liu: Conceptualization, Resources, Supervision, Project administration, Funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Bo-Ping Tang or Qiu-Ning Liu.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

Written informed consent was obtained from all participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, ZZ., Tang, S., Lu, X. et al. The analyses of the complete mitochondrial genomes of three crabs revealed novel gene rearrangements and phylogenetic relationships of Brachyura. Mol Biol Rep 50, 10301–10313 (2023). https://doi.org/10.1007/s11033-023-08833-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08833-3

Keywords

Navigation