Skip to main content
Log in

Role of apoptosis and autophagy in mediating tramadol-induced neurodegeneration in the rat hippocampus

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Tramadol (TRA) is an analgesic prescribed for treating mild to moderate pains, the abuse of which has increased in recent years. Chronic tramadol consumption produces neurotoxicity, although the mechanisms are unclear. The present study investigated the involvement of apoptosis and autophagy signaling pathways and the mitochondrial system in TRA-induced neurotoxicity.

Materials and methods

Sixty adult male Wistar rats were divided into five groups that received standard saline or TRA in doses of 25, 50, 75, 100, or 150 mg/kg intraperitoneally for 21 days. On the 22nd day, the Open Field Test (OFT) was conducted. Jun N-Terminal Kinase (JNK), B-cell lymphoma-2 (Bcl-2), Beclin1, and Bcl-2-like protein 4 (Bax) proteins and tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β) were measured in rat hippocampal tissue.

Results

TRA at doses 75, 100, and 150 mg/kg caused locomotor dysfunction in rats and increased total and phosphorylated forms of JNK and Beclin-1, Bax, and Caspase-3. TRA at the three higher doses also increased the phosphorylated (inactive) form of Bcl-2 level while decreasing the unphosphorylated (active) form of Bcl-2. Similarly, the protein levels of TNF-α and IL-1β were increased dose-dependently. The mitochondrial respiratory chain enzymes were reduced at the three higher doses of TRA.

Conclusion

TRA activated apoptosis and autophagy via modulation of TNF-α or IL-1β/JNK/Bcl-2/Beclin1 and Bcl-2/Bax signaling pathways and dysfunction of mitochondrial respiratory chain enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets are available from the corresponding author upon reasonable request.

Abbreviations

Akt :

Protein kinase B (PKB)

ANOVA :

Analysis of variances

Bax :

Bcl-2-like protein 4

Bcl-2 :

B-cell lymphoma-2

BSA :

Bovine serum albumin

EGTA :

ethylene glycol tetra-acetic acid

EPM :

Elevated Plus Maze

GSSG :

Glutathione in oxidized form

ELISA :

enzyme-linked immunosorbent assay

EPM :

Elevated Plus Maze

FAAD :

Fas Associated Via Death Domain

FAS :

Fas cell surface death receptor

FST :

Forced Swim Test

GSH :

reducing type of glutathione

HPLC :

High-performance liquid chromatography

H 2 SO 4 :

Sulphoric Acid

IHC :

Immunohistochemistry

IL-1β :

interleukin 1 beta

iNOS :

inducible nitric oxide synthase

JNKs :

c-Jun N-terminal kinases

MAPK :

Mitogen-activated protein kinase

MDA :

Malondialdehyde

MgCl2 :

magnesium chloride

MPO :

Myeloperoxidase

mTOR :

Mammalian target of rapamycin

NaCl :

Sodium Chloride

NADPH :

nicotinamide adenine dinucleotide phosphate

NaH2PO4 :

Sodium dihydrogen phosphate

NF-κB :

nuclear factor kappa B

NO :

Nitric Oxide

NOAEL :

No Observed Adverse Effect Level

OFT :

Open Field Test

PC :

personal computer

ROS :

Reactive Oxygen Species

SEM :

Standard error of the mean

TMB substrate :

3,3’,5,5’-Tetramethyl –benzidine

TNF-α :

tumor necrosis factor alpha

TRAIL/Apo2L :

Tumor necrosis factor-related apoptosis-inducing ligand

TRA :

Tramadol

TST :

Tail Suspension Test

UVRAG :

UV radiation resistance-related gene

WB :

Western blotting

References

  1. Kamranian H et al (2023) (just-accepted) Neuroprotective potential of Trimetazidine against tramadol-induced neurotoxicity: role of PI3K/Akt/mTOR signaling pathways Toxicology Mechanisms and Methods, p. 1–50

  2. Dunn KE et al (2019) A systematic review of laboratory evidence for the abuse potential of tramadol in humans. Front Psychiatry 10:704

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ezi S et al (2021) Chronic exposure to Tramadol induces neurodegeneration in the Cerebellum of Adult Male rats. Neurotox Res 39(4):1134–1147

    Article  CAS  PubMed  Google Scholar 

  4. Mohamed HM, Mahmoud AM (2019) Chronic exposure to the opioid tramadol induces oxidative damage, inflammation and apoptosis, and alters cerebral monoamine neurotransmitters in rats. Biomed Pharmacother 110:239–247

    Article  CAS  PubMed  Google Scholar 

  5. Soltani R et al (2020) Tramadol exposure upregulated apoptosis, inflammation and autophagy in PC12 cells and rat’s striatum: an in vitro-in vivo approach. J Chem Neuroanat 109:101820

    Article  CAS  PubMed  Google Scholar 

  6. Mehdizadeh H et al (2017) Mitochondrial impairments contribute to spatial learning and memory dysfunction induced by chronic tramadol administration in rat: protective effect of physical exercise. Prog Neuropsychopharmacol Biol Psychiatry 79:426–433

    Article  CAS  PubMed  Google Scholar 

  7. Sarhan NR, Taalab YM (2018) Oxidative stress/PERK/apoptotic pathways interaction contribute to tramadol neurotoxicity in rat cerebral and cerebellar cortex and thyme enhances the antioxidant defense system: histological, immunohistochemical and ultrastructural study. Int J 4(6):124

    Google Scholar 

  8. Samadi M et al (2021) Caffeine attenuates seizure and brain mitochondrial disruption induced by Tramadol: the role of adenosinergic pathway. Drug Chem Toxicol 44(6):613–619

    Article  CAS  PubMed  Google Scholar 

  9. Hussein SA, Abdel Aal SAL (2017) Neurodegeneration and oxidative stress induced by tramadol administration in male rats: the effect of its withdrawal. Benha Veterinary Medical Journal 33(2):149–159

    Article  Google Scholar 

  10. Al-Mashhadane FA, Ismail HK, Al-Saidya A (2019) Histopathological effects of chronic use of tramadol on liver and kidney in sheep model. J Pharm Sci Res 11(6):2208–2212

    CAS  Google Scholar 

  11. Okouchi M et al (2007) Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal 9(8):1059–1096

    Article  CAS  PubMed  Google Scholar 

  12. Graeber MB, Moran LB (2002) Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol 12(3):385–390

    Article  PubMed  Google Scholar 

  13. Ali HA et al (2020) Neurotoxic, hepatotoxic and nephrotoxic effects of tramadol administration in rats. J Mol Neurosci 70:1934–1942

    Article  CAS  PubMed  Google Scholar 

  14. Aghajanpour F et al (2020) Tramadol: a potential neurotoxic agent affecting prefrontal cortices in adult male rats and PC-12 cell line. Neurotox Res 38:385–397

    Article  CAS  PubMed  Google Scholar 

  15. Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69(1):217–245

    Article  CAS  PubMed  Google Scholar 

  16. Salehi E et al (2021) Curcumin can be Acts as effective agent for Prevent or Treatment of Alcohol-induced toxicity in hepatocytes: an Illustrated mechanistic review. Iran J Pharm Research: IJPR 20(1):418

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang J, Lam GY, Brumell JH (2011) Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 14(11):2215–2231

    Article  CAS  PubMed  Google Scholar 

  18. Meijer AJ et al (2015) Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 47:2037–2063

    Article  CAS  PubMed  Google Scholar 

  19. Fairlie WD, Tran S, Lee EF (2020) Crosstalk between apoptosis and autophagy signaling pathways. Int Rev cell Mol biology 352:115–158

    Article  Google Scholar 

  20. Codogno P, Meijer AJ (2005) Autophagy and signaling: their role in cell survival and cell death. Cell Death & Differentiation 12(2):1509–1518

    Article  CAS  Google Scholar 

  21. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang S et al (2016) Neuroprotective effects of β-asarone against 6-hydroxy dopamine-induced parkinsonism via JNK/Bcl-2/Beclin-1 pathway. Mol Neurobiol 53(1):83–94

    Article  CAS  PubMed  Google Scholar 

  23. Hetz CA (2007) ER stress signaling and the BCL-2 family of proteins: from adaptation to irreversible cellular damage. Antioxid Redox Signal 9(12):2345–2356

    Article  CAS  PubMed  Google Scholar 

  24. Chitnis T, Weiner HL (2017) CNS inflammation and neurodegeneration. J Clin Investig 127(10):3577–3587

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27(48):6245–6251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kandezi N et al (2020) Preventive properties of ramelteon against cocaine-induced autophagia and apoptosis: A hypothetic role of TNF-α receptor involvement and JNK/Bcl-2-Beclin1 or Bcl-2/Bax signaling pathway. Medknow

  27. Sepehr A et al (2020) Minocycline may be useful to prevent or treat methamphetamine-induced neural cell death: hypothetic role of autophagia and apoptosis signaling pathway. Adv Biomedical Res 2020(February):1–2

    Google Scholar 

  28. Gump JM, Thorburn A (2011) Autophagy and apoptosis: what is the connection? Trends Cell Biol 21(7):387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mukhopadhyay S et al (2014) Autophagy and apoptosis: where do they meet? Apoptosis 19:555–566

    Article  CAS  PubMed  Google Scholar 

  30. Atici S et al (2004) Opioid neurotoxicity: comparison of morphine and tramadol in an experimental rat model. Int J Neurosci 114(8):1001–1011

    Article  CAS  PubMed  Google Scholar 

  31. Nafea OE et al (2016) A study of the neurotoxic effects of tramadol and cannabis in adolescent male albino rats. Sci Rep 2:143–154

    Google Scholar 

  32. Mowaad NA, El-Shamarka ME, Khadrawy YA (2022) The behavioral and neurochemical changes induced by boldenone and/or tramadol in adult male rats. Neurochem Res, p. 1–14

  33. El-Gaafarawi II (2006) Biochemical toxicity induced by tramadol administration in male rats. Egypt J Hosp Med 23(1):353–362

    Article  CAS  Google Scholar 

  34. Gould TD, Dao DT, Kovacsics CE (2009) The open field test, in Mood and anxiety related phenotypes in mice. Springer, pp 1–20

  35. Ghafarimoghadam M et al (2022) A review of behavioral methods for the evaluation of cognitive performance in animal models: current techniques and links to human cognition. Physiol Behav 244:113652

    Article  CAS  PubMed  Google Scholar 

  36. Zarate SC et al (2017) Hormone deprivation alters mitochondrial function and lipid profile in the hippocampus

  37. Yu H et al (2018) Mitochondrial molecular abnormalities revealed by proteomic analysis of hippocampal organelles of mice triple transgenic for Alzheimer disease. Front Mol Neurosci 11:74

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shah K, Maghsoudlou P (2016) Enzyme-linked immunosorbent assay (ELISA): the basics. Br J Hosp Med 77(7):C98–C101

    Article  Google Scholar 

  39. Konstantinou GN (2017) Enzyme-linked immunosorbent assay (ELISA), in Food Allergens. Springer, pp 79–94

  40. Oh S-h et al (2017) Comparisons of ELISA and Western blot assays for detection of autophagy flux. Data in brief 13:696–699

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stark AM et al (2007) p53, BCL-2 and BAX in non-small cell lung cancer brain metastases: a comparison of real-time RT-PCR, ELISA and immunohistochemical techniques. Neurol Res 29(5):435–440

    Article  CAS  PubMed  Google Scholar 

  42. Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51(12):2415–2418

    Article  CAS  PubMed  Google Scholar 

  43. Kirby DM et al (2007) Biochemical assays of respiratory chain complex activity. Methods Cell Biol 80:93–119

    Article  CAS  PubMed  Google Scholar 

  44. Bénit P et al (2006) Three spectrophotometric assays for the measurement of the five respiratory chain complexes in minuscule biological samples. Clin Chim Acta 374(1–2):81–86

    Article  PubMed  Google Scholar 

  45. Alemán-Laporte J et al (2022) Effect of the analgesics dipyrone, tramadol, and meloxicam on the behavior of laboratory rats. J Veterinary Behav 57:24–30

    Article  Google Scholar 

  46. Antiorio ATFB et al (2022) Assessment of general activity and anxiety-like behavior in mice following tramadol and meloxicam administration for managing immediate post-operative pain. Biol Models Res Technol 2(1):0–0

    Google Scholar 

  47. Szkutnik-Fiedler D et al (2012) Concomitant use of tramadol and venlafaxine—evaluation of antidepressant-like activity and other behavioral effects in rats. Pharmacol Rep 64(6):1350–1358

    Article  CAS  PubMed  Google Scholar 

  48. Symeon I et al (2017) Evaluation of the effects of tramadol on analgesic response and locomotor activity on two different strains of laboratory mice. J Hellenic Veterinary Med Soc 68(1):89–96

    Article  Google Scholar 

  49. Yang C et al (2012) Tramadol pretreatment enhances ketamine-induced antidepressant effects and increases mammalian target of rapamycin in rat hippocampus and prefrontal cortex BioMed Research International, 2012

  50. Ubale Vishal M et al (2015) V.M.,., Evaluation of antidepressant activity of tramadol in mice: an experimental study

  51. Abdel-Zaher AO, Abdel-Rahman MS, ELwasei FM (2011) Protective effect of Nigella sativa oil against tramadol-induced tolerance and dependence in mice: role of nitric oxide and oxidative stress. Neurotoxicology 32(6):725–733

    Article  CAS  PubMed  Google Scholar 

  52. Nagakannan P et al (2012) Effect of tramadol on behavioral alterations and lipid peroxidation after transient forebrain ischemia in rats. Toxicol Mech Methods 22(9):674–678

    Article  CAS  PubMed  Google Scholar 

  53. Mehranpour M et al (2022) Tramadol-induced apoptosis in auditory hair cells of adult male rats. J Chem Neuroanat 126:102172

    Article  CAS  PubMed  Google Scholar 

  54. Hosseindoost S et al (2022) Effect of tramadol on apoptosis and synaptogenesis in hippocampal neurons: the possible role of µ-opioid receptor. Drug Dev Res 83(6):1425–1433

    Article  CAS  PubMed  Google Scholar 

  55. Liu L-C et al (2022) Mitochondrial dysfunction involved in the cytotoxicity of Tramadol in Human Endometrial Carcinoma cells. Int J Mol Sci 24(1):99

    Article  PubMed  PubMed Central  Google Scholar 

  56. Elnagar GM et al (2022) 10-Dehydrogingerdione attenuates Tramadol-Induced nephrotoxicity by modulating renal oxidative stress, inflammation and apoptosis in experimental rats: role of HO-1 activation and TLR4/NF-κB/ERK inhibition. Int J Mol Sci 23(3):1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sadek KM et al (2018) The molecular and biochemical insight view of lycopene in ameliorating tramadol-induced liver toxicity in a rat model: implication of oxidative stress, apoptosis, and MAPK signaling pathways. Environ Sci Pollut Res 25:33119–33130

    Article  CAS  Google Scholar 

  58. Marquez RT, Xu L (2012) Bcl-2: beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J cancer Res 2(2):214

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Reed J (2006) Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell death & differentiation 13(8):1378–1386

    Article  CAS  Google Scholar 

  60. Stefani C (2012) The role of ER stress-induced apoptosis in neurodegeneration. Curr Alzheimer Res 9(3):373–387

    Article  CAS  PubMed  Google Scholar 

  61. Kandezi N et al (2020) Preventive Properties of Ramelteon against Cocaine-Induced Autophagia and apoptosis: a hypothetic role of TNF-α receptor involvement and JNK/Bcl-2-Beclin1 or Bcl-2/Bax signaling pathway. Int J Prev Med 11(3):11–36. https://doi.org/10.4103/ijpvm.IJPVM_446_19. (16 March 2020)

    Article  Google Scholar 

  62. Frake RA et al (2015) Autophagy and neurodegeneration. J Clin Investig 125(1):65–74

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wei Y, Sinha SC, Levine B (2008) Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation. Autophagy 4(7):949–951

    Article  CAS  PubMed  Google Scholar 

  64. Decuypere J-P, Parys JB, Bultynck G (2012) Regulation of the autophagic bcl-2/beclin 1 interaction Cells, 1(3): p. 284–312

  65. Hussein SA, Ismail HK, Abdel Aal SA (2017) Effect of tramadol drug on some biochemical and immunological parameters in albino male rats; evaluation of possible reversal following its withdrawal. Benha veterinary medical journal 33(2):418–429

    Article  Google Scholar 

  66. Adelakun SA, Ukwenya VO, Akintunde OW (2022) Vitamin B12 ameliorate tramadol-induced oxidative stress, endocrine imbalance, apoptosis and NO/iNOS/NF-κB expression in Sprague Dawley rats through regulatory mechanism in the pituitary-gonadal axis. Tissue Cell 74:101697

    Article  CAS  PubMed  Google Scholar 

  67. Ricci MS, El-Deiry WS (2007) The extrinsic pathway of apoptosis Apoptosis, senescence, and cancer, p. 31–54

  68. Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4(2):147–171

    Article  Google Scholar 

  69. Harris J (2011) Autophagy and cytokines. Cytokine 56(2):140–144

    Article  CAS  PubMed  Google Scholar 

  70. Harris J et al (2017) Autophagy and inflammasomes. Mol Immunol 86:10–15

    Article  CAS  PubMed  Google Scholar 

  71. Lagard C et al (2016) Mechanisms of tramadol-related neurotoxicity in the rat: does diazepam/tramadol combination play a worsening role in overdose? Toxicol Appl Pharmcol 310:108–119

    Article  CAS  Google Scholar 

  72. Aghajanpour F et al (2020) Tramadol: a potential neurotoxic agent affecting prefrontal cortices in adult male rats and PC-12 cell line. Neurotox Res 38(2):385–397

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The current work was supported by the Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Motaghinejad.

Ethics declarations

Conflict of interest

None declared.

Ethical approval

All experimental procedure of this research project was approved by the research committee in Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. (Research Protocol and ethical code number = IR.SBMU.NRITLD.REC.1401.105).

Informed consent

None Declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, M., Hayes, A.W., Jamaati, H. et al. Role of apoptosis and autophagy in mediating tramadol-induced neurodegeneration in the rat hippocampus. Mol Biol Rep 50, 7393–7404 (2023). https://doi.org/10.1007/s11033-023-08641-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08641-9

Keywords

Navigation