Skip to main content
Log in

Epigenomics in stress tolerance of plants under the climate change

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Climate change has had a tremendous impact on the environment in general as well as agricultural crops grown in these situations as time passed. Agricultural production of crops is less suited and of lower quality due to disturbances in plant metabolism brought on by sensitivity to environmental stresses, which are brought on by climate change. Abiotic stressors that are specific to climate change, including as drought, extremes in temperature, increasing CO2, waterlogging from heavy rain, metal toxicity, and pH changes, are known to negatively affect an array of species. Plants adapt to these challenges by undergoing genome-wide epigenetic changes, which are frequently accompanied by differences in transcriptional gene expression. The sum of a cell’s biochemical modifications to its nuclear DNA, post-translational modifications to histones, and variations in the synthesis of non-coding RNAs is called an epigenome. These modifications frequently lead to variations in gene expression that occur without any alteration in the underlying base sequence.

Epigenetic mechanisms and marks

The methylation of homologous loci by three different modifications—genomic (DNA methylation), chromatin (histone modifications), and RNA-directed DNA methylation (RdDM)-could be regarded as epigenetic mechanisms that control the regulation of differential gene expression. Stresses from the environment cause chromatin remodelling, which enables plant cells to adjust their expression patterns temporarily or permanently.

Epigenomics’ consequences for genome stability and gene expression

DNA methylation affects gene expression in response to abiotic stressors by blocking or suppressing transcription. Environmental stimuli cause changes in DNA methylation levels, either upward in the case of hypermethylation or downward in the case of hypomethylation. The type of stress response that occurs as a result also affects the degree of DNA methylation alterations. Stress is also influenced by DRM2 and CMT3 methylating CNN, CNG, and CG. Both plant development and stress reactions depend on histone changes. Gene up-regulation is associated with histone tail phosphorylation, ubiquitination, and acetylation, while gene down-regulation is associated with de-acetylation and biotinylation. Plants undergo a variety of dynamic changes to histone tails in response to abiotic stressors. The relevance of these transcripts against stress is highlighted by the accumulation of numerous additional antisense transcripts, a source of siRNAs, caused by abiotic stresses. The study highlights the finding that plants can be protected from a range of abiotic stresses by epigenetic mechanisms such DNA methylation, histone modification, and RNA-directed DNA methylation.

Transgenerational inheritance and sources of epigenetic variation

Stress results in the formation of epialleles, which are either transient or enduring epigenetic stress memory in plants. After the stress is gone, the stable memory is kept for the duration of the plant’s remaining developmental cycles or passed on to the next generations, leading to plant evolution and adaptability. The bulk of epigenetic changes brought on by stress are temporary and return to normal after the stress has passed. Some of the modifications, however, might be long-lasting and transmitted across mitotic or even meiotic cell divisions. Epialleles often have genetic or non-genetic causes. Epialleles can arise spontaneously due to improper methylation state maintenance, short RNA off-target effects, or other non-genetic causes. Developmental or environmental variables that influence the stability of epigenetic states or direct chromatin modifications may also be non-genetic drivers of epigenetic variation. Transposon insertions that change local chromatin and structural rearrangements, such copy number changes that are genetically related or unrelated, are two genetic sources of epialleles.

Epigenomics in crop improvement

To include epigenetics into crop breeding, it is necessary to create epigenetic variation as well as to identify and evaluate epialleles. Epigenome editing or epi-genomic selection may be required for epiallele creation and identification. In order to combat the challenges given by changing environments, these epigenetic mechanisms have generated novel epialleles that can be exploited to develop new crop types that are more climate-resilient. Numerous techniques can be used to alter the epigenome generally or at specific target loci in order to induce the epigenetic alterations necessary for crop development. Technologies like CRISPR/Cas9 and dCas, which have recently advanced, have opened up new avenues for the study of epigenetics. Epialleles could be employed in epigenomics-assisted breeding in addition to sequence-based markers for crop breeding.

Conclusions and future prospectus

A few of the exciting questions that still need to be resolved in the area of heritable epigenetic variation include a better understanding of the epigenetic foundation of characteristics, the stability and heritability of epialleles, and the sources of epigenetic variation in crops. Investigating long intergenic non-coding RNAs (lincRNAs) as an epigenetic process might open up a new path to understanding crop plant’s ability to withstand abiotic stress. For many of these technologies and approaches to be more applicable and deployable at a lower cost, technological breakthroughs will also be necessary. Breeders will probably need to pay closer attention to crop epialleles and how they can affect future responses to climate changes. The development of epialleles suitable for particular environmental circumstances may be made possible by creating targeted epigenetic changes in pertinent genes and by comprehending the molecular underpinnings of trans generational epigenetic inheritance. More research on a wider variety of plant species is required in order to fully comprehend the mechanisms that produce and stabilise epigenetic variation in crops. In addition to a collaborative and multidisciplinary effort by researchers in many fields of plant science, this will require a greater integration of the epigenomic data gathered in many crops. Before it may be applied generally, more study is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Andy P (2016) Abiotic stress tolerance in plants. Plant Sci 7:1–9

    Google Scholar 

  2. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. The Plant J 61:1041–1052

    Article  CAS  PubMed  Google Scholar 

  3. Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA 3268–3273

  4. Wheeler T, Von Braun J (2013) Climate change impacts on global food security. Sci Direct 341:508–513

    CAS  Google Scholar 

  5. Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plant Cell Environ 3:458–475

    Google Scholar 

  6. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  7. Compant S, Van Der Heijden MG, Sessitsch A (2010) Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol Ecol 73(2):197–214

    CAS  PubMed  Google Scholar 

  8. Ashraf M, Foolad MR (2005) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  Google Scholar 

  9. Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecol Lett 15:365–377

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gehring M, Henikof S (2007) DNA methylation dynamics in plant genomes. Biochim Biophys Acta 1769:276–286

    Article  CAS  PubMed  Google Scholar 

  11. Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150(3811):563–565

    Article  Google Scholar 

  13. Tsaftaris AS, Polidoros AN, Kapazoglou A, Tani E, Kovacevic NM (2007) Epigenetics and plant breeding. Plant Breed Rev 30:49–178

    Google Scholar 

  14. Bonasio R, Tu S, Reinberg D (2010) Molecular signals of epigenetic states. Science 330:612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Springer NM, Schmitz RJ (2017) Exploiting induced and natural epigenetic variation for crop improvement. Nat Rev Genet 18(9):563–575. https://doi.org/10.1038/nrg.2017.45

    Article  CAS  PubMed  Google Scholar 

  16. Hidetoshi S, Kazuo T, Tatsuo K, Taisuke N (2012) DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol 53(5):766–784

    Article  Google Scholar 

  17. Karlsson M, Weber W, Fussenegger M (2011) De novo design and construction of an inducible gene expression system in mammalian cells. Methods Enzymol 497:239–253

    Article  CAS  PubMed  Google Scholar 

  18. Zhang H, Lang Z, Zhu JK (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19:489–506

    Article  CAS  PubMed  Google Scholar 

  19. Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K, Harmer SL, Zilberman D (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu JK (2009) Active DNA methylation mediated by DNA glycosylases. Annu Rev Genet 43:143–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA et al (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337(6100):1360–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Penterman J, Uzawa R, Fischer RL (2007) Genetic interactions between DNA demethylation and methylation in Arabidopsis. Plant Physiol 145(4):1549–1557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11(3):204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu J, Wang Q, Freeling M et al (2017) Natural antisense transcripts are significantly involved in regulation of drought stress in maize. Nucleic Acids Res 45:5126–5141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Forestan C, Aiese Cigliano R, Farinati S, Lunardon A, Sanseverino W, Varotto S (2016) Stress- induced and epigenetic-mediated maize transcriptome regulation study by means of transcriptome reannotation and differential expression analysis. Sci Rep 6:30446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang N, Ku LX, Chen YH, Wang W (2015) Comparative proteomic analysis of leaves between photoperiod-sensitive and photoperiod-insensitive maize inbred seedlings under long day treatments. Acta Physiol Plant 37:1705

    Article  Google Scholar 

  27. Hou H, Zhao L, Zheng X, Gautam M, Yue M, Hou J, Chen Z, Wang P, Li L (2019) Dynamic changes in histone modification are associated with upregulation of Hsf and rRNA genes during heat stress in maize seedlings. Protoplasma 256:1245–1256

    Article  CAS  PubMed  Google Scholar 

  28. Steward N, Kusano T, Sano H (2000) Expression of ZmMET1, a gene encoding a DNA methyl transferase from maize, is associated not only with DNA replication in actively proliferating cells, but also with altered DNA methylation status in cold-stressed quiescent cells. Nucleic Acids Res 28:3250–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002) Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem 277:37741–37746

    Article  CAS  PubMed  Google Scholar 

  30. Hu X, Wu X, Li C, Lu M, Liu T, Wang Y, Wang W (2012) Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light. PLoS ONE 7:e49500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu XL, Lu MH, Li CH et al (2011) Differential expression of proteins in maize roots in response to abscisic acid and drought. Acta Physiol Plant 33:2437–2446

    Article  CAS  Google Scholar 

  32. Wang Y, Li H, Sun Q, Yao Y (2016) Characterization of small RNAs derived from tRNAs, rRNAs and snoRNAs and their response to heat stress in wheat seedlings. PLoS ONE 11:e0150933

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhong L, Xu YH, Wang JB (2009) DNA-methylation changes induced by salt stress in wheat Triticum aestivum. Afr J Biotechnol 8:6201–6207

    Article  CAS  Google Scholar 

  34. Kumar S, Beena AS, Awana M, Singh A (2017) Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticum aestivum) genotypes with contrasting salt tolerance. Front Plant Sci 8:1151

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kantar M, Unver T, Budak H (2010) Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Funct Integr Genomics 10:493–507

    Article  CAS  PubMed  Google Scholar 

  36. Papaefthimiou D, Tsaftaris A (2012) Characterization of a drought inducible trithorax-like H3K4 methyltransferase from barley. Biol Plant 56:683–692

    Article  CAS  Google Scholar 

  37. Surdonja K, Eggert K, Hajirezaei MR, Harshavardhan V, Seiler C, von Wirén N, Sreenivasulu N, Kuhlmann M (2017) Increase of DNA methylation at the HvCKX2.1 promoter by terminal drought stress in barley. Epigenomes 1:9

    Article  Google Scholar 

  38. Temel A, Janack B, Humbeck K (2017) Drought stress-related physiological changes and histone modifications in barley primary leaves at HSP17 gene. Agronomy 7:43

    Article  Google Scholar 

  39. Wang W, Pan YJ, Zhao XQ, Dwivedi D, Zhu LH, Ali J, Fu BY, Li ZK (2011) Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J Exp Bot 62:1951–1960

    Article  CAS  PubMed  Google Scholar 

  40. Wang W, Zhao X, Pan Y, Zhu L, Fu B, Li Z (2011) DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J Genet Genomics 38:419–424

    Article  CAS  PubMed  Google Scholar 

  41. Gayacharan A, Joel AJ (2013) Epigenetic responses to drought stress in rice (Oryza sativa L.). Physiol Mol Biol Plants 19:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mutum RD, Balyan SC, Kansal S, Agarwal P, Kumar S, Kumar M, Raghuvanshi S (2013) Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS J 280:1717–1730

    Article  CAS  PubMed  Google Scholar 

  43. Karan R, DeLeon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS ONE 7:e40203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou DX, Yang W, Zhao Y (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156

    Article  CAS  PubMed  Google Scholar 

  45. Ferreira LJ, Donoghue MT, Barros P, Saibo NJ, Santos AP, Oliveira MM (2019) Uncovering differentially methylated regions (DMRs) in a salt-tolerant rice variety under stress: one step towards new regulatory regions for enhanced salt tolerance. Epigenomes 3:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kulcheski FR, de Oliveira LF, Molina LG et al (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sosa-Valencia G, Palomar M, Covarrubias AA, Reyes JL (2017) The legume miR1514a modulates a NAC transcription factor transcript to trigger phasiRNA formation in response to drought. J Exp Bot 68:2013–2026

    CAS  PubMed  Google Scholar 

  48. Hossain MS, Kawakatsu T, Kim KD et al (2017) Divergent cytosine DNA methylation patterns in single-cell, soybean root hairs. New Phytol 214:808–819

    Article  CAS  PubMed  Google Scholar 

  49. Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M (2002) Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol 4:694–699

    Article  CAS  Google Scholar 

  50. Hajyzadeh M, Turktas M, Khawar KM, Unver T (2015) miR408 overexpression causes increased drought tolerance in chickpea. Gene 555:186–193

    Article  CAS  PubMed  Google Scholar 

  51. Khandal H, Parween S, Roy R, Meena MK, Chattopadhyay D (2017) MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency. Sci Rep 7:4632

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shui XR, Chen ZW, Li JX (2013) MicroRNA prediction and its function in regulating drought- related genes in cowpea. Plant Sci 210:25–35

    Article  CAS  PubMed  Google Scholar 

  53. De la Rosa C, Covarrubias AA, Reyes JL (2019) A dicistronic precursor encoding miR398 and the legume-specific miR2119 coregulates CSD1 and ADH1 mRNAs in response to water deficit. Plant Cell Environ 42:133–144

    Article  PubMed  Google Scholar 

  54. Abid G, Mingeot D, Muhovski Y et al (2017) Analysis of DNA methylation patterns associated with stress response in faba bean (Vicia faba L.) using methylation-sensitive amplification polymorphism (MSAP). Environ Exp Bot 142:34–44

    Article  CAS  Google Scholar 

  55. Arshad M, Gruber MY, Hannoufa A (2018) Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. Sci Rep 8:9363

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gao G, Li J, Li H, Li F, Xu K, Yan G, Chen B, Qiao J, Wu X (2014) Comparison of the heat stress induced variations in DNA methylation between heat-tolerant and heat-sensitive rapeseed seedlings. Breed Sci 64:125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marconi G, Pace R, Traini A, Raggi L, Lutts S, Chiusano M, Guiducci M, Falcinelli M, Benincasa P, Albertini E (2013) Use of MSAP markers to analyse the effects of salt stress on DNA methylation in rapeseed (Brassica napus var. oleifera). PLoS ONE 8:e75597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shea DJ, Nishida N, Takada S, Itabashi E, Takahashi S, Akter A et al (2019) Long noncoding RNAs in Brassica rapa L following vernalization. Sci Rep 9:9302

    Article  PubMed  PubMed Central  Google Scholar 

  59. Benoit M, Drost HG, Catoni M, Gouil Q, Lopez-Gomollon S, Baulcombe D, Paszkowski J (2019) Environmental and epigenetic regulation of Rider retrotransposons in tomato. PLoS Genet 15:e1008370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. González RM, Ricardi MM, Iusem ND (2011) Atypical epigenetic mark in an atypical location: cytosine methylation at asymmetric (CNN) sites within the body of a non-repetitive tomato gene. BMC Plant Biol 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  61. Huang W, Xian Z, Hu G, Li Z (2016) SlAGO4A, a core factor of RNA directed DNA methylation (RdDM) pathway, plays an important role under salt and drought stress in tomato. Mol Breed 36(3):28

    Article  Google Scholar 

  62. Zhang B, Tieman DM, Jiao C, Xu Y, Chen K, Fei Z, Giovannoni JJ, Klee HJ (2016) Chilling- induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc Natl Acad Sci USA 113:12580–12585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yolcu S, Ozdemir F, Güler A, Bor M (2016) Histone acetylation infuences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. Plant Physiol Biochem 100:37–46

    Article  CAS  PubMed  Google Scholar 

  64. Zheng Y, Ding Y, Sun X, Xie S, Wang D, Liu X, Zhou DX (2016) Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. J Exp Bot 67(6):1703–1713

    Article  CAS  PubMed  Google Scholar 

  65. Baek D, Jiang J, Chung JS, Wang B, Chen J, Xin Z, Shi H (2011) Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance. Plant Cell Physiol 52:149–161

    Article  CAS  PubMed  Google Scholar 

  66. Sako K, Kim JM, Matsui A, Nakamura K, Tanaka M, Kobayashi M, Yoshida M (2015) Ky-2, a histone deacetylase inhibitor, enhances high-salinity stress tolerance in Arabidopsis thaliana. Plant Cell Physiol 57(4):776–783

    Article  PubMed  Google Scholar 

  67. Raju SKK, Shao MR, Wamboldt Y, Mackenzie S (2018) Epigenomic plasticity of Arabidopsis msh1 mutants under prolonged cold stress. bioRxiv 263780

  68. Fu Y, Ma H, Chen S, Gu T, Gong J (2017) Control of proline accumulation under drought via a novel pathway comprising the histone methylase CAU1 and the transcription factor ANAC055. J Exp Bot 69(3):579–588

    Article  PubMed Central  Google Scholar 

  69. Huang S, Zhang A, Jin JB, Zhao B, Wang TJ, Wu Y, Wang S, Liu Y, Wang J, Guo P, Ahmad R, Liu B, Xu ZY (2019) Arabidopsis histone H3K4 demethylase JMJ 17 functions in dehydration stress response. New Phytol 223:1372–1387

    Article  CAS  PubMed  Google Scholar 

  70. Arıkan B, Özden S, Turgut-Kara N (2018) DNA methylation related gene expression and morphophysiological response to abiotic stresses in Arabidopsis thaliana. Environ Exp Bot 149:17–26

    Article  Google Scholar 

  71. Fina JP, Casati P (2015) HAG3, a histone acetyltransferase, affects UV-B responses by negatively regulating the expression of DNA repair enzymes and sunscreen content in Arabidopsis thaliana. Plant Cell Physiol 56:1388–1400

    Article  CAS  PubMed  Google Scholar 

  72. Singh P, Yekondi S, Chen P-W, Tsai C-H, Yu C-W, Wu K, Zimmerli L (2014) Environmental history modulates Arabidopsis pattern triggered immunity in a HISTONE ACETYLTRANSFERASE1–dependent manner. Plant Cell 26:2676–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Luo M, Wang YY, Liu X, Yang S, Lu Q, Cui Y, Wu K (2012) HD2C interacts with HDA6 and is involved in ABA and salt stress response in Arabidopsis. J Exp Bot 6:3297–3306

    Article  Google Scholar 

  74. Buszewicz D, Archacki R, Palusiński A, Kotliński M, Fogtman A, Iwanicka-Nowicka R, Sosnowska K, Kuciński J, Pupel P, Olędzki J, Dadlez M, Misicka A, Jerzmanowski A, Koblowska MK (2016) HD2C histone deacetylase and a SWI/SNF chromatin remodelling complex interact and both are involved in mediating the heat stress response in Arabidopsis. Plant Cell Environ 39:2108–2122

    Article  CAS  PubMed  Google Scholar 

  75. Shi D, Zhuang K, Xia Y, Zhu C, Chen C, Hu Z, Shen Z (2017) Hydrilla verticillata employs two different ways to affect DNA methylation under excess copper stress. Aquat Toxicol 193:97–10

    Article  CAS  PubMed  Google Scholar 

  76. Miryeganeh M, Marlétaz F, Gavriouchkina D, Saze H (2021) De novo genome assembly and in natura epigenomics reveal salinity-induced DNA methylation in the mangrove tree Bruguiera gymnorhiza. New Phytol. https://doi.org/10.1111/nph.17738

    Article  PubMed  PubMed Central  Google Scholar 

  77. Liang D, Zhang Z, Wu H, Huang C, Shuai P, Ye CY, Yin W (2014) Single-base-resolution methylomes of Populus trichocarpa reveal the association between DNA methylation and drought stress. BMC Genet 15(1):S9

    Article  PubMed  PubMed Central  Google Scholar 

  78. Pereira WJ, Pappas M, Grattapaglia D, Pappas G (2020) A cost–effective approach to DNA methylation detection by methyl sensitive DArT sequencing. PLoS ONE 15:e0233800. https://doi.org/10.1371/journal.pone.0233800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sow MD, Le Gac AL, Fichot R, Lanciano S, Delaunay A, Le-Jan I et al (2021) RNAi suppression of DNA methylation affects the drought stress response and genome integrity in transgenic poplar. New Phytol 2021:17555. https://doi.org/10.1111/nph.17555

    Article  CAS  Google Scholar 

  80. Wang MZ, Li HL, Tang M, Yu FH (2022) DNA methylation correlates with responses of experimental Hydrocotyle vulgaris populations to different flood regimes. Front Plant Sci 13:831175. https://doi.org/10.3389/fpls.2022.831175

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sammarco I, Münzbergová Z, Latzel V (2022) DNA methylation can mediate local adaptation and response to climate change in the clonal plant Fragaria vesca: Evidence from a European–scale reciprocal transplant experiment. Front Plant Sci 13:827166. https://doi.org/10.3389/fpls.2022.827166

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lehmair TA, Poschlod P, Reisch C (2022) The impact of environment on genetic and epigenetic variation in Trifolium pratense populations from two contrasting semi–natural grasslands. R Soc Open Sci 9:211406. https://doi.org/10.1098/rsos.211406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Agarwal G, Kudapa H, Ramalingam A, Choudhary D, Sinha P, Garg V, Singh VK, Patil GB, Pandey MK, Nguyen HT et al (2020) Epigenetics and epigenomics: underlying mechanisms, relevance, and implications in crop improvement. Funct Integr Genomics 20:739–761

    Article  CAS  PubMed  Google Scholar 

  84. Wei W, Tao JJ, Chen HW, Li QT, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2017) A histone code reader and a transcriptional activator interact to regulate genes for salt tolerance. Plant Physiol 175:1304–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006) Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol 47:995–1003

    Article  CAS  PubMed  Google Scholar 

  86. Liu C, Lu F, Cui X, Cao X (2010) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420

    Article  CAS  PubMed  Google Scholar 

  87. Grativol C, Hemerly AS, Ferreira PCG (2012) Genetic and epigenetic regulation of stress responses in natural plant populations. Biochem Biophys Acta 1819:176–185

    CAS  PubMed  Google Scholar 

  88. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double stranded RNA. Nature 431:343

    Article  CAS  PubMed  Google Scholar 

  89. Maxwell EK, Ryan JF, Schnitzler CE, Browne WE, Baxevanis AD (2012) MicroRNAs and essential components of the microRNA processing machinery are not encoded in the genome of the ctenophore Mnemiopsis leidyi. BMC Genom 13(1):714–723

    Article  CAS  Google Scholar 

  90. Xu C, Tian J, Mo B (2013) siRNA-mediated DNA methylation and H3K9 dimethylation in plants. Protein Cell 4(9):656–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mosher RA, Schwach F, Studholme D, Baulcombe DC (2008) PolIVb infuences RNA-directed DNA methylation independently of its role in siRNA biogenesis. PNAS 105:3145–3150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xie M, Yu B (2015) siRNA-directed DNA methylation in plants. Curr Genomics 16(1):23–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Dalakouras A, Wassenegger M (2013) Revisting RNA-directed DNA methylation. RNA Biol 10(3):453–455

    Article  PubMed  PubMed Central  Google Scholar 

  94. Boyko A, Kovalchuk I (2008) Epigenetic control of plant stress response. Environ Mol Mutagen 49:61–72

    Article  CAS  PubMed  Google Scholar 

  95. Zemach A, McDaniel IE, Silva P, Zilberman D (2010) Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 4:328–338

    Google Scholar 

  96. Choi CS, Sano H (2007) Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics 277(5):589–600

    Article  CAS  PubMed  Google Scholar 

  97. Dyachenko OV, Zakharchenko NS, Shevchuk TV, Bohnert HJ, Buryanov YI (2006) Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry 71(4):461–465

    CAS  PubMed  Google Scholar 

  98. Kovarik A, Koukalova B, Bezdek M, Opatrny Z (1997) Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor Appl Genet 95:301–306

    Article  Google Scholar 

  99. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikof S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers interdependence between methylation and transcription. Natl Genet 39:61–69

    Article  CAS  Google Scholar 

  100. Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A, Michelmore RW, Dubcovsky J (2010) Small RNAs, DNA methylation and transposable elements in wheat. BMC Genomics 11(1):408

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hashida SN, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T (2006) The temperature- dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell 18:104–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci USA 93:7783–7788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Beguiristain T, Grandbastien MA, Puigdomenech P, Casacuberta M (2001) Three Tnt1 subfamilies show diferent stress-associated pattern of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol 127:212–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Nat Acad Sci 97(12):6603–6660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM et al (2014) How a retrotransposon exploits the plant’s heat stress response for its activation. PLoS Genet 10(1):1004115

    Article  Google Scholar 

  106. Chen LT, Luo M, Wang YY, Wu K (2010) Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot 61:3345–3353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M (2007) Up-regulation of stress- inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifcations. Planta 227:245–254

    Article  CAS  PubMed  Google Scholar 

  108. Kim J, To T, Ishida J, Morosawa T, Kawashima M, Matsui A et al (2009) Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol 50:1856–1864

    Article  CAS  Google Scholar 

  109. Cloix C, Jenkins GI (2008) Interaction of the Arabidopsis UV-B-specific signalling component UVR8 with chromatin. Mol Plant 1:118–128

    Article  CAS  PubMed  Google Scholar 

  110. Boyko A, Golubov A, Bilichak A, Kovalchuk I (2010) Chlorine ions but not sodium ions alter genome stability of Arabidopsis thaliana. Plant Cell Physiol 51(6):1066–1078

    Article  CAS  PubMed  Google Scholar 

  111. Zeller G, Henz SR, Widmer CK, Sachsenberg T, Ratsch G, Weigel D, Laubinger S (2009) Stress- induced changes in the Arabidopsis thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58:1068–1082

    Article  CAS  PubMed  Google Scholar 

  112. Yan Y, Zhang Y, Yang K, Sun Z, Fu Y, Chen X et al (2011) Small RNAs from MITE derived stem- loop precursors regulate abscisic acid signalling and abiotic stress responses in rice. Plant J 65:820–828

    Article  CAS  PubMed  Google Scholar 

  113. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schwab R, Maizel A, Ruiz-Ferrer V, Garcia D, Bayer M, Crespi M et al (2009) Endogenous TasiRNAs mediate non-cell autonomous effects on gene regulation in Arabidopsis thaliana. PLoS ONE 4:5980

    Article  Google Scholar 

  115. Lister R, Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3):523–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Zhong X, Wang ZQ, Xiao R, Wang Y, Xie Y, Zhou X (2017) iTRAQ analysis of the tobacco leaf proteome reveals that RNA-directed DNA methylation (RdDM) has important roles in defense against geminivirus-betasatellite infection. J Proteomics 152:88–101

    Article  CAS  PubMed  Google Scholar 

  117. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Lv D, Bai X, Li Y, Ding X, Ge Y, Cai H et al (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459:39–47

    Article  CAS  PubMed  Google Scholar 

  119. Zhang J, Xu Y, Huan Q, Chong K (2009) Deep sequencing of Brachypodium small RNAs at the global genome level identifies micro RNAs involved in cold stress response. BMC Genomics 10:449

    Article  PubMed  PubMed Central  Google Scholar 

  120. Kim DH, Doyle MR, Sung S, Amasino RM (2009) Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 25:277–299

    Article  CAS  PubMed  Google Scholar 

  121. Whittaker C, Dean C (2017) The FLC locus: a platform for discoveries in epigenetics and adaptation. Annu Rev Cell Dev Biol 33:555–575

    Article  CAS  PubMed  Google Scholar 

  122. Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004) Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164–167

    Article  CAS  PubMed  Google Scholar 

  123. Csorba T, Questa JI, Sun Q, Dean C (2014) Antisense COOLAIR mediates the coordinated switching of chromatin states at FLC during vernalization. Proc Natl Acad Sci USA 111:16160–16165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Castaings L, Bergonzi S, Albani MC, Kemi U, Savolainen O, Coupland G (2014) Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives. Nat Commun 5:4457

    Article  CAS  PubMed  Google Scholar 

  125. Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  Google Scholar 

  126. Shanker A, Venkateswarlu B, eds (2011) Abiotic stress in plants: mechanisms and adaptations. InTech, Rijeka, p 42

  127. Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M, Benke E, Kabelitz T, Jähne F, Graf A (2016) Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. eLife 5:e17061

    Article  PubMed  PubMed Central  Google Scholar 

  128. Gallusci P, Dai Z, Génard M, Gauffretau A, Leblanc-Fournier N, Richard-Molard C, Vile D, Brunel- Muguet S (2017) Epigenetics for plant improvement: current knowledge and modeling avenues. Trends Plant Sci 22:610–623

    Article  CAS  PubMed  Google Scholar 

  129. Mozgova I, Mikulski P, Pecinka A, Farrona S (2019) Epigenetic mechanisms of abiotic stress response and memory in plants. In: Alvarez-Ve De-la-Peña C, Casas-Mollano JA (eds) Epigenetics in plants of agronomic importance: fundamentals and applications. Springer International, Cham, pp 1–64

    Google Scholar 

  130. Molinier J, Ries G, Zipfel C, Hohn B (2006) Transgeneration memory of stress in plants. Nature 442:1046–1049

    Article  CAS  PubMed  Google Scholar 

  131. Lang-Mladek C, Popova O, Kiok K, Berlinger M, Rakic B, Aufsatz W, Jonak C, Hauser MT, Luschnig C (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol Plant 3:594–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kwon CS, Lee D, Choi G, Chung WI (2009) Histone occupancy dependent and -independent removal of H3K27 trimethylation at cold-responsive genes in Arabidopsis. Plant J 60:112–121

    Article  CAS  PubMed  Google Scholar 

  133. Pecinka A, Dinh HQ, Baubec T, Rosa M, Lettner N, Mittelsten Scheid O (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22:3118–3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Jiang D, Berger F (2017) DNA replication-coupled histone modification maintains Polycomb gene silencing in plants. Science 357(6356):1146–1149

    Article  CAS  PubMed  Google Scholar 

  135. Taudt A, Colome-Tatche M, Johannes F (2016) Genetic sources of population epigenomic variation. Nat Rev Genet 17:319–332

    Article  CAS  PubMed  Google Scholar 

  136. Zhang L et al (2017) A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat Commun 8:14789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chandler VL (2007) Paramutation: from maize to mice. Cell 128:641–645

    Article  CAS  PubMed  Google Scholar 

  138. Kaeppler SM, Kaeppler HF, Rhee Y (2000) Epigenetic aspects of somaclonal variation in plants. Plant Mol Biol 43:179–188

    Article  CAS  PubMed  Google Scholar 

  139. Rhee Y, Sekhon RS, Chopra S, Kaeppler S (2010) Tissue culture-induced novel epialleles of a Myb transcription factor encoded by pericarp color1 in maize. Genetics 186:843–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ong-Abdullah M, Ordway JM, Jiang N et al (2015) Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature 525:533–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Tanurdzic M et al (2008) Epigenomic consequences of immortalized plant cell suspension culture. PLoS Biol 6:2880–2895

    Article  CAS  PubMed  Google Scholar 

  142. Stroud H et al (2013) Plants regenerated from tissue culture contain stable epigenome changes in rice. eLife 2:e00354

    Article  PubMed  PubMed Central  Google Scholar 

  143. Stelpflug SC, Eichten SR, Hermanson PJ, Springer NM, Kaeppler SM (2014) Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize. Genetics 198:209–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hollick JB (2017) Paramutation and related phenomena in diverse species. Nat Rev Genet 18:5–23

    Article  CAS  PubMed  Google Scholar 

  145. Greaves IK et al (2016) Twenty-four-nucleotide siRNAs produce heritable trans-chromosomal methylation in F1 Arabidopsis hybrids. Proc Natl Acad Sci USA 113:E6895–E6902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jordan WT, Schmitz RJ (2016) The shocking consequences of hybrid epigenomes. Genome Biol 17:85

    Article  PubMed  PubMed Central  Google Scholar 

  147. Rigal M et al (2016) Epigenome confrontation triggers immediate reprogramming of DNA methylation and transposon silencing in Arabidopsis thaliana F1 epihybrids. Proc Natl Acad Sci USA 113:E2083–E2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wendel JF, Jackson SA, Meyers BC, Wing RA (2016) Evolution of plant genome architecture. Genome Biol 17:37

    Article  PubMed  PubMed Central  Google Scholar 

  149. Lane AK, Niederhuth CE, Ji L, Schmitz RJ (2014) pENCODE: a plant encyclopedia of DNA elements. Annu Rev Genet 48:49–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Turcotte H, Hooker J, Samanfar B, Parent JS (2022) Can epigenetics guide the production of better adapted cultivars? Agronomy 12:838. https://doi.org/10.3390/agronomy12040838

    Article  CAS  Google Scholar 

  151. Guarino F, Cicatelli A, Castiglione S, Agius DR, Orhun GE, Fragkostefanakis S et al (2022) An epigenetic alphabet of crop adaptation to climate change. Front Genet 13:818727. https://doi.org/10.3389/fgene.2022.818727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xia H, Huang W, Xiong J, Tao T, Zheng X, Wei H et al (2016) Adaptive epigenetic differentiation between upland and lowland rice ecotypes revealed by methylation-sensitive amplified polymorphism. PLoS ONE 11(7):e0157810. https://doi.org/10.1371/journal.pone.0157810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Samantara K, Shiv A, de Sousa LL, Sandhu KS, Priyadarshini P, Mohapatra SR (2021) A comprehensive review on epigenetic mechanisms and application of epigenetic modifications for crop improvement. Environ Exp Bot 188:104479. https://doi.org/10.1016/j.envexpbot.2021.104479

    Article  CAS  Google Scholar 

  154. Cong W, Miao Y, Xu L, Zhang Y, Yuan C, Wang J et al (2019) Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryza sativa L.). BMC Plant Biol 19:282. https://doi.org/10.1186/s12870-019-1887-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ashapkin VV, Kutueva LI, Aleksandrushkina NI, Vanyushin BF (2020) Epigenetic mechanisms of plant adaptation to biotic and abiotic stresses. Int J Mol Sci 21:7457. https://doi.org/10.3390/ijms21207457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Papikian A, Liu W, Gallego-Bartolomé J, Jacobsen SE (2019) Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 10:729. https://doi.org/10.1038/s41467-019-08736-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. De Melo BP, Lourenço-Tessutti IT, Paixão JFR, Noriega DD, Silva MCM, de Almeida-Engler J, Fontes EPB, Grossi-de-Sa MF (2020) Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit. Sci Rep 10:16231. https://doi.org/10.1038/s41598-020-72464-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Jogam P, Sandhya D, Alok A, Peddaboina V, Allini VR, Zhang B (2022) A review on CRISPR/Cas-based epigenetic regulation in plants. Int J Biol Macromol 219:1261–1271. https://doi.org/10.1016/j.ijbiomac.2022.08.182

    Article  CAS  PubMed  Google Scholar 

  159. Qi Q, Hu B, Jiang W, Wang Y, Yan J, Ma F, Guan Q, Xu J (2023) Advances in plant epigenome editing research and its application in plants. Int J Mol Sci 24:3442. https://doi.org/10.3390/ijms24043442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Hou Q, Wan X (2021) Epigenome and epitranscriptome: potential resources for crop improvement. Int J Mol Sci 22:12912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Moradpour M, Abdulah SNA (2020) CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing. Plant Biotechnol J 18:32–44

    Article  PubMed  Google Scholar 

  162. Bilichak A, Kovalchuk I (2016) Transgenerational response to stress in plants and its application for breeding. J Exp Bot 67:2081–2092

    Article  CAS  PubMed  Google Scholar 

  163. Pandey MK et al (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7:455

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hofmeister BT, Lee K, Rohr NA, Hall DW, Schmitz RJ (2017) Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol 18:155

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kooke R, Johannes F, Wardenaar R, Becker F, Etcheverry M, Colot V, Vreugdenhil D, Keurentjes JJB (2015) Epigenetic basis of morphological variation and phenotypic plasticity in Arabidopsis thaliana. Plant Cell 27:337–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  167. Hu Y, Morota G, Rosa GJ, Gianola D (2015) Prediction of plant height in Arabidopsis thaliana using DNA methylation data. Genetics 201:779–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zhang Y, Andrews H, Eglitis-Sexton J, Godwin I, Tanurdžić M, Crisp PA (2022) Epigenome guided crop improvement: current progress and future opportunities. Emerg Top Life Sci 6:ETLS20210258. https://doi.org/10.1042/ETLS20210258

    Article  Google Scholar 

  169. Bhogireddy S, Kudapa H, Bajaj P, Garg V, Chitikineni A, Nayak S, Varshney RK (2023) Transcriptome analysis of chickpea during heat stress unveils the signatures of long intergenic non-coding RNAs (lincRNAs) and mRNAs in the heat-QTL region. Crop Des 21:100026. https://doi.org/10.1016/j.cropd.2023.100026

    Article  Google Scholar 

Download references

Funding

Source of Funding is not applicable for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mithlesh Kumar.

Ethics declarations

Competing interests

There are no competing interests the authors would like to declare.

Informed consent

The authors declare that they have no conflict of interest. All the authors read and approved the manuscript.

Ethical approval

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Rani, K. Epigenomics in stress tolerance of plants under the climate change. Mol Biol Rep 50, 6201–6216 (2023). https://doi.org/10.1007/s11033-023-08539-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08539-6

Keywords

Navigation