Skip to main content

Advertisement

Log in

Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a review

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Nigella sativa and its main bioactive ingredient, thymoquinone, exhibit various pharmacological activities, including neuroprotective, nephroprotective, cardioprotective, gastroprotective, hepatoprotective, and anti-cancer effects. Many studies have been conducted trying to elucidate the molecular signaling pathways that mediate these diverse pharmacological properties of N. sativa and thymoquinone. Accordingly, the goal of this review is to show the effects of N. sativa and thymoquinone on different cell signaling pathways.

Methods

The online databases Scopus, PubMed and Web of Science were searched to identify relevant articles using a list of related keywords such as Nigella sativa, black cumin, thymoquinone, black seed, signal transduction, cell signaling, antioxidant, Nrf2, NF-κB, PI3K/AKT, apoptosis, JAK/STAT, AMPK, MAPK, etc. Only articles published in the English language until May 2022 were included in the present review article.

Results

Studies indicate that N. sativa and thymoquinone improve antioxidant enzyme activities, effectively scavenges free radicals, and thus protect cells from oxidative stress. They can also regulate responses to oxidative stress and inflammation via Nrf2 and NF-κB pathways. N. sativa and thymoquinone can inhibit cancer cell proliferation through disruption of the PI3K/AKT pathway by upregulating phosphatase and tensin homolog. Thymoquinone can modulate reactive oxygen species levels in tumor cells, arrest the cell cycle in the G2/M phase as well as affect molecular targets including p53, STAT3 and trigger the mitochondrial apoptosis pathway. Thymoquinone, by adjusting AMPK, can regulate cellular metabolism and energy hemostasis. Finally, N. sativa and thymoquinone can elevate brain GABA content, and thus it may ameliorate epilepsy.

Conclusions

Taken together, the improvement of antioxidant status and prevention of inflammatory process by modulating the Nrf2 and NF-κB signaling and inhibition of cancer cell proliferation through disruption of the PI3K/AKT pathway appear to be the main mechanisms involved in different pharmacological properties of N. sativa and thymoquinone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

None to declare.

Abbreviations

ACC:

Acetyl-CoA carboxylase

AMPK:

AMP-activated protein kinase

Ang II:

Angiotensin II

ARE:

Antioxidant response element

ATF6:

Activating transcription factor 6

CAT:

Catalase

COX-2:

Cyclooxygenase-2

CRC:

Colorectal cancer

EMT:

Epithelial‑mesenchymal transition

ERK:

Extracellular signal-regulated kinase

GLUT4:

Glucose transporter 4

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

GSH:

Glutathione

GST:

Glutathione S-transferase

HFD:

High-fat diet

HSCs:

Hepatic stellate cells

IL-1β:

Interleukin-1β

IL-6:

Interleukin-6

iNOS:

Inducible nitric oxide synthase

JNK:

C-JUN N-terminal kinase

LDL-C:

Low-density lipoprotein cholesterol

LKB1:

Liver kinase B1

LPS:

Lipopolysaccharide

MBP:

Myelin basic protein

MDA:

Malondialdehyde

MI:

Myocardial infarction

MMP:

Matrix metalloproteinase

MPO:

Myeloperoxidase

mTOR:

Mammalian target of rapamycin

NO:

Nitric oxide

NOX4:

NADPH Oxidase 4

NRCMs:

Neonatal rat cardiomyocytes

NSSP:

Nigella sativa seed polysaccharides

PCOS:

Polycystic ovary syndrome

PE:

Phenylephrine

PGC-1α:

Peroxisome proliferator-activated receptor-γ coactivator-1α

PGE2:

Prostaglandin E2

PPAR-γ:

Peroxisome proliferator-activated receptor-γ

PTEN:

Phosphatase and tensin homolog

PTZ:

Pentylenetetrazole

RA:

Rheumatoid arthritis

RCC:

Renal cell carcinoma

ROS:

Reactive oxygen species

SE:

Status epilepticus

siRNA:

Small interfering RNA

SIRT1:

Sirtuin1

SOD:

Superoxide dismutase

TAC:

Transverse aortic constriction

TGF-β:

Transforming growth factor β

TIMP:

Tissue inhibitor of metalloproteinase

TLR2:

Toll-like receptor 2

TNBC:

Triple-negative breast cancer

TNF-α:

Tumor necrosis factor-alpha

TQ:

Thymoquinone

VEGF:

Vascular endothelial growth factor

VSMCs:

Vascular smooth muscle cells

α-SMA:

α-Smooth muscle actin

References

  1. Amin B, Hosseinzadeh H (2016) Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med 82:8–16

    CAS  PubMed  Google Scholar 

  2. Oskouei Z, Akaberi M, Hosseinzadeh H (2018) A glance at black cumin (Nigella sativa) and its active constituent, thymoquinone, in ischemia: a review. Iran J Basic Med Sci 21:1200–1209

    PubMed  PubMed Central  Google Scholar 

  3. Fadishei M, Ghasemzadeh Rahbardar M, Imenshahidi M et al (2020) Effects of Nigella sativa oil and thymoquinone against bisphenol A-induced metabolic disorder in rats. Phytother Res 35:2005–2024

    Article  PubMed  Google Scholar 

  4. Saadat S, Aslani MR, Ghorani V et al (2021) The effects of Nigella sativa on respiratory, allergic and immunologic disorders, evidence from experimental and clinical studies, a comprehensive and updated review. Phytother Res 35:2968–2996

    Article  CAS  PubMed  Google Scholar 

  5. Boneh A (2015) Signal transduction in inherited metabolic disorders: a model for a possible pathogenetic mechanism. J Inherit Metab Dis 38:729–740

    Article  CAS  PubMed  Google Scholar 

  6. Pizzino G, Irrera N, Cucinotta M et al (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 2017:8416763–8416763

    Article  PubMed  PubMed Central  Google Scholar 

  7. Oskouei Z, Mehri S, Kalalinia F et al (2021) Evaluation of the effect of thymoquinone in d-galactose-induced memory impairments in rats: role of MAPK, oxidative stress, and neuroinflammation pathways and telomere length. Phytother Res 35:2252–2266

    Article  CAS  PubMed  Google Scholar 

  8. Medhet M, El-Bakly WM, Badr AM et al (2022) Thymoquinone attenuates isoproterenol-induced myocardial infarction by inhibiting cytochrome C and matrix metalloproteinase-9 expression. Clin Exp Pharmacol Physiol 49:391–405

    Article  CAS  PubMed  Google Scholar 

  9. Akgül B, Aycan İÖ, Hidişoğlu E et al (2021) Alleviation of prilocaine-induced epileptiform activity and cardiotoxicity by thymoquinone. DARU J Pharm Sci 29:85–99

    Article  Google Scholar 

  10. Badibostan H, Mehri S, Mohammadi E et al (2019) Protective effect of thymoquinone on D-galactose-induced aging in mice. Jundishapur J Nat Pharm Prod 14

  11. Ebrahimi SS, Oryan S, Izadpanah E et al (2017) Thymoquinone exerts neuroprotective effect in animal model of Parkinson’s disease. Toxicol Lett 276:108–114

    Article  CAS  PubMed  Google Scholar 

  12. Safhi MM, Qumayri HM, Masmali AUM et al (2019) Thymoquinone and fluoxetine alleviate depression via attenuating oxidative damage and inflammatory markers in type-2 diabetic rats. Arch Physiol Biochem 125:150–155

    Article  CAS  PubMed  Google Scholar 

  13. Umar S, Zargan J, Umar K et al (2012) Modulation of the oxidative stress and inflammatory cytokine response by thymoquinone in the collagen induced arthritis in Wistar rats. Chem Biol Interact 197:40–46

    Article  CAS  PubMed  Google Scholar 

  14. Talebi M, Talebi M, Farkhondeh T et al (2020) Biological and therapeutic activities of thymoquinone: focus on the Nrf2 signaling pathway. Phytother Res 35:1739–1753

    Article  PubMed  Google Scholar 

  15. Velagapudi R, Kumar A, Bhatia HS et al (2017) Inhibition of neuroinflammation by thymoquinone requires activation of Nrf2/ARE signalling. Int Immunopharmacol 48:17–29

    Article  CAS  PubMed  Google Scholar 

  16. Dong J, Zhang X, Wang S et al (2020) Thymoquinone prevents dopaminergic neurodegeneration by attenuating oxidative stress via the Nrf2/ARE pathway. Front Pharmacol 11:615598

    Article  CAS  PubMed  Google Scholar 

  17. Shao YY, Li B, Huang YM et al (2017) Thymoquinone attenuates brain injury via an antioxidative pathway in a status epilepticus rat model. Transl Neurosci 8:9–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Feng YH, Chen L, Chen YH et al (2017) Effects of thymoquinone on oxidative stress and cytokine expression in brain of type 2 diabetic rats. Fudan Univ J Med Sci 44:483–488

    Google Scholar 

  19. Jiang L, Li H, Zhao N (2017) Thymoquinone protects against cobalt chloride-induced neurotoxicity via Nrf2/GCL-regulated glutathione homeostasis. J Biol Regul Homeost 31:843–853

    CAS  Google Scholar 

  20. Hashem KS, Abdelazem AZ, Mohammed MA et al (2021) Thymoquinone alleviates mitochondrial viability and apoptosis in diclofenac-induced acute kidney injury (AKI) via regulating Mfn2 and miR-34a mRNA expressions. Environ Sci Pollut Res 28:10100–10113

    Article  CAS  Google Scholar 

  21. Sabir S, Saleem U, Akash MSH et al (2022) Thymoquinone induces Nrf2 mediated adaptive homeostasis: implication for mercuric chloride-induced nephrotoxicity. ACS Omega 7:7370–7379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gore PR, Prajapati CP, Mahajan UB et al (2016) Protective effect of thymoquinone against cyclophosphamide-induced hemorrhagic cystitis through inhibiting DNA damage and upregulation of Nrf2 expression. Int J Biol Sci 12:944–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kundu J, Kim DH, Kundu JK et al (2014) Thymoquinone induces heme oxygenase-1 expression in HaCaT cells via Nrf2/ARE activation: Akt and AMPKα as upstream targets. Food Chem Toxicol 65:18–26

    Article  CAS  PubMed  Google Scholar 

  24. Liang J, Lian L, Wang X et al (2021) Thymoquinone, extract from Nigella sativa seeds, protects human skin keratinocytes against UVA-irradiated oxidative stress, inflammation and mitochondrial dysfunction. Mol Immunol 135:21–27

    Article  CAS  PubMed  Google Scholar 

  25. Dera A, Rajagopalan P, Ahmed I et al (2020) Thymoquinone attenuates IgE-mediated allergic response via pi3k-Akt-NFκB pathway and upregulation of the Nrf2-HO1 axis. J Food Biochem 44:e13216

    Article  CAS  PubMed  Google Scholar 

  26. Ahmad A, Alkharfy KM, Jan BL et al (2020) Thymoquinone treatment modulates the Nrf2/HO-1 signaling pathway and abrogates the inflammatory response in an animal model of lung fibrosis. Exp Lung Res 46:53–63

    Article  CAS  PubMed  Google Scholar 

  27. Zeren S, Bayhan Z, Kocak FE et al (2016) Gastroprotective effects of sulforaphane and thymoquinone against acetylsalicylic acid-induced gastric ulcer in rats. J Surg Res 203:348–359

    Article  CAS  PubMed  Google Scholar 

  28. Hu X, Liang Y, Zhao B et al (2019) Thymoquinone protects human retinal pigment epithelial cells against hydrogen peroxide induced oxidative stress and apoptosis. J Cell Biochem 120:4514–4522

    Article  CAS  PubMed  Google Scholar 

  29. Atta MS, El-Far AH, Farrag FA et al (2018) Thymoquinone attenuates cardiomyopathy in streptozotocin-treated diabetic rats. Oxid Med Cell Longev 2018:1–10

    Article  Google Scholar 

  30. Shen HH, Peterson SJ, Bellner L et al (2020) Cold-pressed Nigella sativa oil standardized to 3% thymoquinone potentiates omega-3 protection against obesity-induced oxidative stress, inflammation, and markers of insulin resistance accompanied with conversion of white to beige fat in mice. Antioxidants 9:489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ali MY, Akter Z, Mei Z et al (2021) Thymoquinone in autoimmune diseases: Therapeutic potential and molecular mechanisms. Biomed Pharmacother 134:111157

    Article  CAS  PubMed  Google Scholar 

  32. Kordestani Z, Shahrokhi-Farjah M, Rouholamini SEY et al (2020) Reduced ikk/nf-kb expression by Nigella sativa extract in breast cancer. Middle East J Cancer 11:150–158

    CAS  Google Scholar 

  33. Shanmugam MK, Ahn KS, Hsu A et al (2018) Thymoquinone inhibits bone metastasis of breast cancer cells through abrogation of the CXCR4 signaling axis. Front Pharmacol 9:1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Arif M, Thakur SC, Datta K (2016) Implication of thymoquinone as a remedy for polycystic ovary in rat. Pharm Biol 54:674–685

    Article  CAS  PubMed  Google Scholar 

  35. Cobourne-Duval MK, Taka E, Mendonca P et al (2018) Thymoquinone increases the expression of neuroprotective proteins while decreasing the expression of pro-inflammatory cytokines and the gene expression NFκB pathway signaling targets in LPS/IFNγ -activated BV-2 microglia cells. J Neuroimmunol 320:87–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramachandran S, Thangarajan S (2018) Thymoquinone loaded solid lipid nanoparticles counteracts 3-Nitropropionic acid induced motor impairments and neuroinflammation in rat model of Huntington’s disease. Metab Brain Dis 33:1459–1470

    Article  CAS  PubMed  Google Scholar 

  37. Shao Y, Feng Y, Xie Y et al (2016) Protective effects of thymoquinone against convulsant activity induced by lithium-pilocarpine in a model of status epilepticus. Neurochem Res 41:3399–3406

    Article  CAS  PubMed  Google Scholar 

  38. Arjumand S, Shahzad M, Shabbir A et al (2019) Thymoquinone attenuates rheumatoid arthritis by downregulating TLR2, TLR4, TNF-α IL-1, and NFκB expression levels. Biomed Pharmacother 111:958–963

    Article  CAS  PubMed  Google Scholar 

  39. Vaillancourt F, Silva P, Shi Q et al (2011) Elucidation of molecular mechanisms underlying the protective effects of thymoquinone against rheumatoid arthritis. J Cell Biochem 112:107–117

    Article  CAS  PubMed  Google Scholar 

  40. Wang D, Qiao J, Zhao X et al (2015) Thymoquinone inhibits IL-1β-induced inflammation in human osteoarthritis chondrocytes by suppressing NF-κB and MAPKs signaling pathway. Inflammation 38:2235–2241

    Article  CAS  PubMed  Google Scholar 

  41. Venkataraman B, Almarzooqi S, Raj V et al (2021) Thymoquinone, a dietary bioactive compound, exerts anti-inflammatory effects in colitis by stimulating expression of the colonic epithelial PPAR-γ transcription factor. Nutrients 13:1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu N, Zhao X, Xiang Y et al (2016) Thymoquinone attenuates monocrotaline-induced pulmonary artery hypertension via inhibiting pulmonary arterial remodeling in rats. Int J Cardiol 221:587–596

    Article  PubMed  Google Scholar 

  43. Fruman DA, Chiu H, Hopkins BD et al (2017) The PI3K pathway in human disease. Cell 170:605–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ma J, Hu X, Li J et al (2017) Enhancing conventional chemotherapy drug cisplatin-induced anti-tumor effects on human gastric cancer cells both in vitro and in vivo by Thymoquinone targeting PTEN gene. Oncotarget 8:85926–85939

    Article  PubMed  PubMed Central  Google Scholar 

  45. Almajali B, Johan MF, Al-Wajeeh AS et al (2022) Gene expression profiling and protein analysis reveal suppression of the C-Myc oncogene and inhibition JAK/STAT and PI3K/AKT/mTOR signaling by thymoquinone in acute myeloid leukemia cells. Pharmaceuticals 15:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Karim S, Burzangi AS, Ahmad A et al (2022) PI3K-AKT pathway modulation by thymoquinone limits tumor growth and glycolytic metabolism in colorectal cancer. Int J Mol Sci 23:2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Idris S, Refaat B, Almaimani RA et al (2022) Enhanced in vitro tumoricidal effects of 5-Fluorouracil, thymoquinone, and active vitamin D3 triple therapy against colon cancer cells by attenuating the PI3K/AKT/mTOR pathway. Life Sci 296:120442

    Article  CAS  PubMed  Google Scholar 

  48. Dong J, Liang Q, Niu Y et al (2020) Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. Int J Biol Macromol 159:725–738

    Article  CAS  PubMed  Google Scholar 

  49. Su X, Ren Y, Yu N et al (2016) Thymoquinone inhibits inflammation, neoangiogenesis and vascular remodeling in asthma mice. Int Immunopharmacol 38:70–80

    Article  CAS  PubMed  Google Scholar 

  50. Liu H, Liu HY, Jiang YN et al (2016) Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats. Mol Med Rep 13:2836–2842

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Gao H, Zhang W et al (2015) Thymoquinone inhibits lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells. Int Immunopharmacol 26:169–173

    Article  PubMed  Google Scholar 

  52. Chen Y, Wang B, Zhao H (2018) Thymoquinone reduces spinal cord injury by inhibiting inflammatory response, oxidative stress and apoptosis via PPAR-γ and PI3K/Akt pathways. Exp Ther Med 15:4987–4994

    PubMed  PubMed Central  Google Scholar 

  53. Wang F, Lei X, Zhao Y et al (2019) Protective role of thymoquinone in sepsis-induced liver injury in BALB/c mice. Exp Ther Med 18:1985–1992

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Mollazadeh H, Afshari AR, Hosseinzadeh H (2017) Review on the potential therapeutic roles of Nigella sativa in the treatment of patients with cancer: involvement of apoptosis - black cumin and cancer. J Pharmacopuncture 20:158–172

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang M, Du H, Huang Z et al (2018) Thymoquinone induces apoptosis in bladder cancer cell via endoplasmic reticulum stress-dependent mitochondrial pathway. Chem Biol Interact 292:65–75

    Article  CAS  PubMed  Google Scholar 

  56. Guler EM, Sisman BH, Kocyigit A et al (2021) Investigation of cellular effects of thymoquinone on glioma cell. Toxicol Rep 8:162–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma J, Zhang Y, Deng H et al (2020) Thymoquinone inhibits the proliferation and invasion of esophageal cancer cells by disrupting the AKT/GSK-3β/Wnt signaling pathway via PTEN upregulation. Phytother Res 34:3388–3399

    Article  CAS  PubMed  Google Scholar 

  58. Hsu HH, Chen MC, Day CH et al (2017) Thymoquinone suppresses migration of LoVo human colon cancer cells by reducing prostaglandin E2 induced COX-2 activation. World J Gastroenterol 23:1171–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hussain AR, Uddin S, Ahmed M et al (2013) Phosphorylated IκBα predicts poor prognosis in activated B-cell lymphoma and its inhibition with thymoquinone induces apoptosis via ROS release. PLoS ONE 8:e60540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Badr G, Lefevre EA, Mohany M (2011) Thymoquinone inhibits the CXCL12-induced chemotaxis of multiple myeloma cells and increases their susceptibility to fas-mediated apoptosis. PLoS ONE 6:e23741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ashour AE, Abd-Allah AR, Korashy HM et al (2014) Thymoquinone suppression of the human hepatocellular carcinoma cell growth involves inhibition of IL-8 expression, elevated levels of TRAIL receptors, oxidative stress and apoptosis. Mol Cell Biochem 389:85–98

    Article  CAS  PubMed  Google Scholar 

  62. Xin P, Xu X, Deng C et al (2020) The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int Immunopharmacol 80:106210

    Article  CAS  PubMed  Google Scholar 

  63. Chae IG, Song NY, Kim DH et al (2020) Thymoquinone induces apoptosis of human renal carcinoma Caki-1 cells by inhibiting JAK2/STAT3 through pro-oxidant effect. Food Chem Toxicol 139:111253

    Article  CAS  PubMed  Google Scholar 

  64. Atteia HH, Arafa MH, Mohammad NS et al (2021) Thymoquinone upregulates miR-125a-5p, attenuates STAT3 activation, and potentiates doxorubicin antitumor activity in murine solid Ehrlich carcinoma. J Biochem Mol Toxicol 35:e22924

    Article  CAS  PubMed  Google Scholar 

  65. Cui BW, Bai T, Yang Y et al (2019) Thymoquinone attenuates acetaminophen overdose-induced acute liver injury and inflammation via regulation of JNK and AMPK signaling pathway. Am J Chin Med 47:577–594

    Article  CAS  PubMed  Google Scholar 

  66. Tavakoli-Rouzbehani OM, Maleki V, Shadnoush M et al (2020) A comprehensive insight into potential roles of Nigella sativa on diseases by targeting AMP-activated protein kinase: a review. DARU J Pharm Sci 28:779–787

    Article  Google Scholar 

  67. Zhang Y, Fan Y, Huang S et al (2018) Thymoquinone inhibits the metastasis of renal cell cancer cells by inducing autophagy via AMPK/mTOR signaling pathway. Cancer Sci 109:3865–3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kou B, Kou Q, Ma B et al (2018) Thymoquinone inhibits metastatic phenotype and epithelial-mesenchymal transition in renal cell carcinoma by regulating the LKB1/AMPK signaling pathway. Oncol Rep 40:1443–1450

    CAS  PubMed  Google Scholar 

  69. Wei C, Zou H, Xiao T et al (2021) TQFL12, a novel synthetic derivative of TQ, inhibits triple-negative breast cancer metastasis and invasion through activating AMPK/ACC pathway. J Cell Mol Med 25:10101–10110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pei X, Li X, Chen H et al (2016) Thymoquinone inhibits angiotensin II-induced proliferation and migration of vascular smooth muscle cells through the AMPK/PPARγ/PGC-1α pathway. DNA Cell Biol 35:426–433

    Article  CAS  PubMed  Google Scholar 

  71. Chen H, Zhuo C, Zu A et al (2022) Thymoquinone ameliorates pressure overload-induced cardiac hypertrophy by activating the AMPK signalling pathway. J Cell Mol Med 26:855–867

    Article  CAS  PubMed  Google Scholar 

  72. Velagapudi R, El-Bakoush A, Lepiarz I et al (2017) AMPK and SIRT1 activation contribute to inhibition of neuroinflammation by thymoquinone in BV2 microglia. Mol Cell Biochem 435:149–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yang Y, Bai T, Yao YL et al (2016) Upregulation of SIRT1-AMPK by thymoquinone in hepatic stellate cells ameliorates liver injury. Toxicol Lett 262:80–91

    Article  CAS  PubMed  Google Scholar 

  74. Bai T, Yang Y, Wu YL et al (2014) Thymoquinone alleviates thioacetamide-induced hepatic fibrosis and inflammation by activating LKB1-AMPK signaling pathway in mice. Int Immunopharmacol 19:351–357

    Article  CAS  PubMed  Google Scholar 

  75. Benhaddou-Andaloussi A, Martineau L, Vuong T et al (2011) The in vivo antidiabetic activity of Nigella sativa is mediated through activation of the AMPK pathway and increased muscle GLUT4 content. Evid Based Complement Altern Med 2011:538671

    Article  Google Scholar 

  76. Zhu N, Xiang Y, Zhao X et al (2019) Thymoquinone suppresses platelet-derived growth factor-BB-induced vascular smooth muscle cell proliferation, migration and neointimal formation. J Cell Mol Med 23:8482–8492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang L, Zhang H, Ma J et al (2022) Effects of thymoquinone against angiotensin II-induced cardiac damage in apolipoprotein E-deficient mice. Int J Mol Med 49:1–12

    Article  Google Scholar 

  78. Dalli T, Beker M, Terzioglu-Usak S et al (2018) Thymoquinone activates MAPK pathway in hippocampus of streptozotocin-treated rat model. Biomed Pharmacother 99:391–401

    Article  CAS  PubMed  Google Scholar 

  79. Tabeshpour J, Mehri S, Abnous K et al (2020) Role of oxidative stress, MAPKinase and apoptosis pathways in the protective effects of thymoquinone against acrylamide-induced central nervous system toxicity in rat. Neurochem Res 45:254–267

    Article  CAS  PubMed  Google Scholar 

  80. Yang J, Kuang XR, Lv PT et al (2015) Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumor Biol 36:259–269

    Article  Google Scholar 

  81. Zhang B, Ting WJ, Gao J et al (2021) Erk phosphorylation reduces the thymoquinone toxicity in human hepatocarcinoma. Environ Toxicol 36:1990–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang Y, Bai T, Sun P et al (2015) Thymoquinone, a bioactive component of Nigella sativa Linn seeds or traditional spice, attenuates acute hepatic failure and blocks apoptosis via the MAPK signaling pathway in mice. RSC Adv 5:7285–7290

    Article  CAS  Google Scholar 

  83. Ullah I, Badshah H, Naseer MI et al (2015) Thymoquinone and vitamin C attenuates pentylenetetrazole-induced seizures via activation of GABAB1 receptor in adult rats cortex and hippocampus. Neuromolecular Med 17:35–46

    Article  CAS  PubMed  Google Scholar 

  84. Hosseinzadeh H, Parvardeh S, Nassiri-Asl M et al (2005) Intracerebroventricular administration of thymoquinone, the major constituent of Nigella sativa seeds, suppresses epileptic seizures in rats. Med Sci Monit 11:BR106–BR110

    CAS  PubMed  Google Scholar 

  85. Gilhotra N, Dhingra D (2011) Thymoquinone produced antianxiety-like effects in mice through modulation of GABA and NO levels. Pharmacol Rep 63:660–669

    Article  CAS  PubMed  Google Scholar 

  86. El-Naggar T, Gómez-Serranillos MP, Palomino OM et al (2010) Nigella sativa L. seed extract modulates the neurotransmitter amino acids release in cultured neurons in vitro. J Biomed Biotechnol 2010:398312

    Article  PubMed  PubMed Central  Google Scholar 

  87. Akhondian J, Parsa A, Rakhshande H (2007) The effect of Nigella sativa L. (black cumin seed) on intractable pediatric seizures. Med Sci Monit 13:CR555–CR559

    PubMed  Google Scholar 

  88. Akhondian J, Kianifar H, Raoofziaee M et al (2011) The effect of thymoquinone on intractable pediatric seizures (pilot study). Epilepsy Res 93:39–43

    Article  CAS  PubMed  Google Scholar 

  89. Das SS, Kannan R, George S et al (2022) Thymoquinone-rich black cumin oil improves sleep quality, alleviates anxiety/stress on healthy subjects with sleep disturbances: a pilot polysomnography study. J Herb Med 32:100507

    Article  Google Scholar 

  90. Kheirouri S, Hadi V, Alizadeh M (2016) Immunomodulatory effect of Nigella sativa oil on T lymphocytes in patients with rheumatoid arthritis. Immunol Invest 45:271–283

    Article  CAS  PubMed  Google Scholar 

  91. Azizi F, Ghorat F, Hassan Rakhshani M et al (2019) Comparison of the effect of topical use of Nigella Sativa oil and diclofenac gel on osteoarthritis pain in older people: a randomized, double-blind, clinical trial. J Herb Med 16:100259

    Article  Google Scholar 

  92. Yousefi M, Barikbin B, Kamalinejad M et al (2013) Comparison of therapeutic effect of topical Nigella with Betamethasone and Eucerin in hand eczema. J Eur Acad Dermatol Venereol 27:1498–1504

    Article  CAS  PubMed  Google Scholar 

  93. Rafati M, Ghasemi A, Saeedi M et al (2019) Nigella sativa L. for prevention of acute radiation dermatitis in breast cancer: a randomized, double-blind, placebo-controlled, clinical trial. Complement Ther Med 47:102205

    Article  PubMed  Google Scholar 

  94. Hadi S, Daryabeygi-Khotbehsara R, Mirmiran P et al (2021) Effect of Nigella sativa oil extract on cardiometabolic risk factors in type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. Phytother Res 35:3747–3755

    Article  CAS  PubMed  Google Scholar 

  95. Abdollahi N, Nadjarzadeh A, Salehi-Abargouei A et al (2022) The effect of Nigella sativa on TAC and MDA in obese and overweight women: secondary analysis of a crossover, double blind, randomized clinical trial. J Diabetes Metab Disord 21:171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Al-Azzawi MA, AboZaid MMN, Ibrahem RAL et al (2020) Therapeutic effects of black seed oil supplementation on chronic obstructive pulmonary disease patients: a randomized controlled double blind clinical trial. Heliyon 6:e04711

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nemati S, Masroorchehr M, Elahi H et al (2021) Effects of Nigella sativa extract on chronic rhinosinusitis: a randomized double blind study. Indian J Otolaryngol Head Neck Surg 73:455–460

    Article  PubMed  PubMed Central  Google Scholar 

  98. Nikkhah-Bodaghi M, Darabi Z, Agah S et al (2019) The effects of Nigella sativa on quality of life, disease activity index, and some of inflammatory and oxidative stress factors in patients with ulcerative colitis. Phytother Res 33:1027–1032

    Article  CAS  PubMed  Google Scholar 

  99. Karandrea S, Yin H, Liang X et al (2017) Thymoquinone ameliorates diabetic phenotype in Diet-Induced Obesity mice via activation of SIRT-1-dependent pathways. PLoS ONE 12:e0185374

    Article  PubMed  PubMed Central  Google Scholar 

  100. Yuan T, Nahar P, Sharma M et al (2014) Indazole-type alkaloids from Nigella sativa seeds exhibit antihyperglycemic effects via AMPK activation in vitro. J Nat Prod 77:2316–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

ES performed the literature search and wrote the manuscript. MI supervised the writing and style correction of the manuscript. HH conceptualized, supervised the study. ALL authors have read and approved the final manuscript.

Corresponding author

Correspondence to Hossein Hosseinzadeh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Consent for publication

All authors gave their consent to publish the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, E., Imenshahidi, M. & Hosseinzadeh, H. Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a review. Mol Biol Rep 50, 5439–5454 (2023). https://doi.org/10.1007/s11033-023-08363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-023-08363-y

Keywords

Navigation