Skip to main content

Advertisement

Log in

Human milk-derived extracellular vesicles alleviate high fat diet-induced non-alcoholic fatty liver disease in mice

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Nonalcoholic fatty liver disease (NAFLD), characterized by excessive hepatic lipid accumulation, imposes serious challenges on public health worldwide. Breastfeeding has been reported to reduce the risk of NAFLD. Extracellular vesicles (EVs) are bilayer membrane vesicles released from various cells into the extracellular space, participating in multiple life processes. Whether EVs from human milk exert metabolic benefits against NAFLD is worth investigating.

Methods and results

In this study, the EVs were isolated from human milk collected from healthy mothers and quantified. Functional analyses were performed using the NAFLD mouse model and free fatty acid (FFA)-stimulated mouse primary hepatocytes. The results showed that human milk-derived EVs could effectively alleviate high fat diet-induced hepatic steatosis and insulin resistance in mice with NAFLD via inhibiting lipogenesis and increasing lipolysis. The FFA-induced lipid accumulation was also inhibited in hepatocytes after treatment with human milk-derived EVs. Mechanistically, the human milk derived-EVs cargo (proteins and miRNAs), which linked to lipid metabolism, may be responsible for these beneficial effects.

Conclusion

The findings of this study highlighted the therapeutic benefits of human milk-derived EVs and provided a new strategy for NAFLD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

ATGL:

Adipose triglyceride lipase

AUC:

Area under curve

BCA:

Bicinchoninic acid

BSA:

Bovine serum albumin

CCK-8:

Cell counting kit-8

CLU:

Clusterin

CPT1a:

Carnitine palmitoyl-transferase 1a

EVs:

Extracellular vesicles

FAS:

Fatty acid synthase

GO:

Gene ontology

GTT:

Glucose tolerance tests

FFA:

Free fatty acid

H&E:

Hematoxylin–eosin staining

HCC:

Hepatocellular carcinoma

HFD:

High-fat diet

HOMA-IR:

Homoeostasis model assessment of insulin resistance

HRP:

Horseradish peroxidase

i.p.:

Intraperitoneally

ITTs:

Insulin tolerance tests

KEGG:

Kyoto encyclopedia of genes and genomes

LTF:

Lactotransferrin

MFGE8:

Milk fat globule-epidermal growth factor-factor 8

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

NCD:

Normal chow diet

NEC:

Necrotizing enterocolitis

NTA:

Nanoparticle tracking analysis

SREBP-1C:

Sterol-regulatory element binding protein-1C

TEM:

Transmission electron microscopy

TC:

Total cholesterol

TG:

Triglyceride

References

  1. Powell EE, Wong VWS, Rinella M (2021) Non-alcoholic fatty liver disease. Lancet 397(10290):2212–2224

    CAS  PubMed  Google Scholar 

  2. Petroni ML, Brodosi L, Bugianesi E, Marchesini G (2021) Management of non-alcoholic fatty liver disease. BMJ 372:m4747

    PubMed  Google Scholar 

  3. Tacke F, Weiskirchen R (2021) Non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH)-related liver fibrosis: mechanisms, treatment and prevention. Ann Transl Med 9(8):729

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bedossa P (2017) Pathology of non-alcoholic fatty liver disease. Liver Int 37(Suppl 1):85–89

    PubMed  Google Scholar 

  5. Ipsen DH, Lykkesfeldt J, Tveden-Nyborg P (2018) Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci 75(18):3313–3327

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lin H-P, Cheng Z-L, He R-Y, Song L, Tian M-X, Zhou L-S, Groh BS, Liu W-R, Ji M-B, Ding C et al (2016) Destabilization of fatty acid synthase by acetylation inhibits de novo lipogenesis and tumor cell growth. Cancer Res 76(23):6924–6936

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeon T-I, Osborne TF (2012) SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 23(2):65–72

    CAS  PubMed  Google Scholar 

  8. Schlaepfer IR, Joshi M (2020) CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology 161(2):bqz046

    PubMed  Google Scholar 

  9. Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A, Madeo F (2012) FAT SIGNALS–lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15(3):279–291

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kalluri R, LeBleu VS (2020) The biology function and biomedical applications of exosomes. Science 367:6478

    Google Scholar 

  11. Jiang X, You L, Zhang Z, Cui X, Zhong H, Sun X, Ji C, Chi X (2021) Biological properties of milk-derived extracellular vesicles and their physiological functions in infant. Front Cell Dev Biol 9:693534

    PubMed  PubMed Central  Google Scholar 

  12. Hu Y, Hell L, Kendlbacher RA, Hajji N, Hau C, van Dam A, Berckmans RJ, Wisgrill L, Ay C, Pabinger I et al (2020) Human milk triggers coagulation via tissue factor-exposing extracellular vesicles. Blood Adv 4(24):6274–6282

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Guay C, Regazzi R (2017) Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab 19(Suppl 1):137–146

    PubMed  Google Scholar 

  14. Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB, Ofrecio JM, Wollam J, Hernandez-Carretero A, Fu W et al (2017) Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171(2):372–384

    CAS  PubMed  Google Scholar 

  15. Zhao H, Shang Q, Pan Z, Bai Y, Li Z, Zhang H, Zhang Q, Guo C, Zhang L, Wang Q (2018) Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue. Diabetes 67(2):235–247

    CAS  PubMed  Google Scholar 

  16. Zeng B, Chen T, Luo J-Y, Zhang L, Xi Q-Y, Jiang Q-Y, Sun J-J, Zhang Y-L (2021) Biological characteristics and roles of noncoding RNAs in milk-derived extracellular vesicles. Adv Nutr 12(3):1006–1019

    PubMed  Google Scholar 

  17. Wang X, Yan X, Zhang L, Cai J, Zhou Y, Liu H, Hu Y, Chen W, Xu S, Liu P et al (2019) Identification and peptidomic profiling of exosomes in preterm human milk: insights into necrotizing enterocolitis prevention. Mol Nutr Food Res 2019:e1801247

    Google Scholar 

  18. Zonneveld MI, van Herwijnen MJC, Fernandez-Gutierrez MM, Giovanazzi A, de Groot AM, Kleinjan M, van Capel TMM, Sijts AJAM, Taams LS, Garssen J et al (2021) Human milk extracellular vesicles target nodes in interconnected signalling pathways that enhance oral epithelial barrier function and dampen immune responses. J Extracell Vesicles 10(5):e12071

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cui X, Tan J, Shi Y, Sun C, Li Y, Ji C, Wu J, Zhang Z, Chen S, Guo X et al (2018) The long non-coding RNA Gm10768 activates hepatic gluconeogenesis by sequestering microRNA-214 in mice. J Biol Chem 293(11):4097–4109

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Agarwal V, Bell GW, Nam J-W, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005

    PubMed  PubMed Central  Google Scholar 

  21. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org resource: targets and expression. Nucleic Acids Res 36:D149–D153

    CAS  PubMed  Google Scholar 

  22. Manca S, Upadhyaya B, Mutai E, Desaulniers AT, Cederberg RA, White BR, Zempleni J (2018) Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep 8(1):11321

    PubMed  PubMed Central  Google Scholar 

  23. Montaigne D, Butruille L, Staels B (2021) PPAR control of metabolism and cardiovascular functions. Nat Rev Cardiol 18(12):809–823

    CAS  PubMed  Google Scholar 

  24. Molinaro A, Becattini B, Mazzoli A, Bleve A, Radici L, Maxvall I, Sopasakis VR, Molinaro A, Bäckhed F, Solinas G (2019) Insulin-driven PI3K-AKT signaling in the hepatocyte is mediated by redundant PI3Kα and PI3Kβ activities and is promoted by RAS. Cell Metab 29(6):1400–1409

    CAS  PubMed  Google Scholar 

  25. Mylonis I, Simos G, Paraskeva E (2019) Hypoxia-inducible factors and the regulation of lipid metabolism. Cells 8(3):214

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Garcia D, Shaw RJ (2017) AMPK: mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell 66(6):789–800

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lawan A, Bennett AM (2017) Mitogen-activated protein kinase regulation in hepatic metabolism. Trends Endocrinol Metab 28(12):868–878

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Han J, Wang Y (2018) mTORC1 signaling in hepatic lipid metabolism. Protein Cell 9(2):145–151

    CAS  PubMed  Google Scholar 

  29. Stefan N, Häring H-U, Cusi K (2019) Non-alcoholic fatty liver disease: causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol 7(4):313–324

    PubMed  Google Scholar 

  30. Rinella ME, Sanyal AJ (2016) Management of NAFLD: a stage-based approach. Nat Rev Gastroenterol Hepatol 13(4):196–205

    CAS  PubMed  Google Scholar 

  31. Sun Y, Shi H, Yin S, Ji C, Zhang X, Zhang B, Wu P, Shi Y, Mao F, Yan Y et al (2018) Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano 12(8):7613–7628

    CAS  PubMed  Google Scholar 

  32. Liao Y, Du X, Li J, Lönnerdal B (2017) Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol Nutr Food Res 61(11):1700082

    Google Scholar 

  33. Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, Murch S, Sankar MJ, Walker N, Rollins NC (2016) Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet 387(10017):475–490

    PubMed  Google Scholar 

  34. Nobili V, Bedogni G, Alisi A, Pietrobattista A, Alterio A, Tiribelli C, Agostoni C (2009) A protective effect of breastfeeding on the progression of non-alcoholic fatty liver disease. Arch Dis Child 94(10):801–805

    CAS  PubMed  Google Scholar 

  35. Ayonrinde OT, Oddy WH, Adams LA, Mori TA, Beilin LJ, de Klerk N, Olynyk JK (2017) Infant nutrition and maternal obesity influence the risk of non-alcoholic fatty liver disease in adolescents. J Hepatol 67(3):568–576

    PubMed  Google Scholar 

  36. Nobili V, Schwimmer JB, Vajro P (2019) Breastfeeding and NAFLD from the maternal side of the mother-infant dyad. J Hepatol 70(1):13–14

    PubMed  Google Scholar 

  37. Zhou X, Li Z, Qi M, Zhao P, Duan Y, Yang G, Yuan L (2020) Brown adipose tissue-derived exosomes mitigate the metabolic syndrome in high fat diet mice. Theranostics 10(18):8197–8210

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin H-Y, Yang Y-L, Wang P-W, Wang F-S, Huang Y-H (2020) The emerging role of microRNAs in NAFLD: highlight of microRNA-29a in modulating oxidative stress, inflammation, and beyond. Cells 9(4):1041

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ru P, Hu P, Geng F, Mo X, Cheng C, Yoo JY, Cheng X, Wu X, Guo JY, Nakano I et al (2016) Feedback loop regulation of SCAP/SREBP-1 by miR-29 modulates EGFR signaling-driven glioblastoma growth. Cell Rep 16(6):1527–1535

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin H-Y, Wang F-S, Yang Y-L, Huang Y-H (2019) MicroRNA-29a suppresses CD36 to ameliorate high fat diet-induced steatohepatitis and liver fibrosis in mice. Cells 8(10):1298

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang H, Yang L, Wang Y, Huang W, Li Y, Chen S, Song G, Ren L (2020) Oxymatrine alleviated hepatic lipid metabolism via regulating miR-182 in non-alcoholic fatty liver disease. Life Sci 257:118090

    CAS  PubMed  Google Scholar 

  42. Liang Q, Chen H, Xu X, Jiang W (2019) miR-182-5p attenuates high-fat -diet-induced nonalcoholic steatohepatitis in mice. Ann Hepatol 18(1):116–125

    CAS  PubMed  Google Scholar 

  43. Zhang L, Tian R, Yao X, Zhang X-J, Zhang P, Huang Y, She Z-G, Li H, Ji Y-X, Cai J (2021) Milk fat globule-epidermal growth factor-factor 8 improves hepatic steatosis and inflammation. Hepatology (Baltimore, MD) 73(2):586–605

    CAS  PubMed  Google Scholar 

  44. Lee S, Son B, Jeon J, Park G, Kim H, Kang H, Youn H, Jo S, Song J-Y, Youn B (2018) Decreased hepatic lactotransferrin induces hepatic steatosis in chronic non-alcoholic fatty liver disease model. Cell Physiol Biochem 47(6):2233–2249

    CAS  PubMed  Google Scholar 

  45. Seo H-Y, Kim M-K, Jung Y-A, Jang BK, Yoo E-K, Park K-G, Lee I-K (2013) Clusterin decreases hepatic SREBP-1c expression and lipid accumulation. Endocrinology 154(5):1722–1730

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the lactating mothers who donated the milk for this study.

Funding

This work was funded by grants from the National Natural Science Foundation of China (Grant Nos. 81770866, 81770837, 81900783 and 82070879), Maternal and Infant Nutrition and Health Research Project (Grant No. 2021FY005), Jiangsu Provincial Medical Innovation Team (Grant no. CXTDA2017001), Jiangsu Provincial Key Research and Development Program (Grant Nos. BE2018616 and BK20211017), Jiangsu Natural Science Foundation (Grant No. BK20190139), Six Talent Peaks Project in Jiangsu Province (Grant No. YY-084), Specialized Disease Cohort Study of Nanjing Medical University (Grant No. NMUC2018014A), 333 High Level Talents Training Project of Jiangsu Province, and Science and Technology Development Foundation Item of Nanjing Medical University (Grant No. NMUB2020141).

Author information

Authors and Affiliations

Authors

Contributions

CJ and XC conceived and designed the project. XJ did the majority of the experiments and wrote the first draft of the paper. YW and HZ aided in experiments and editing. XZ performed data analysis of miRNA sequencing and mass spectrometry. XC collected the human milk and provided EVs. XS and LL provided expertise on experimental design and interpretation of data. XC, XC and CJ provided the funding and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xianwei Cui, Xia Chi or Chenbo Ji.

Ethics declarations

Conflict of interest

All the authors declare that no conflict of interest.

Ethical approval

First, all the donors had signed the informed consent for breast milk donation. The Institutional Review Board at Women’s Hospital of Nanjing Medical University approved this study (Permission Number 2020KY-007). Second, all animal experiments were approved by the Animal Ethics Committee of Nanjing Medical University (Permission Number IACUC-2011052). All experimental protocols followed the guidelines issued by National Institute of Health and the Institutional Animal Care and Use Committee of Nanjing Medical University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2165 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Wu, Y., Zhong, H. et al. Human milk-derived extracellular vesicles alleviate high fat diet-induced non-alcoholic fatty liver disease in mice. Mol Biol Rep 50, 2257–2268 (2023). https://doi.org/10.1007/s11033-022-08206-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08206-2

Keywords

Navigation