Skip to main content
Log in

Stress does not induce a general transcription of transposable elements in Drosophila

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Transposable elements, also known as “jumping genes,” have the ability to hop within the host genome. Nonetheless, this capacity is kept in check by the host cell defense systems to avoid unbridled TE mobilization. Different types of stressors can activate TEs in Drosophila, suggesting that TEs may play an adaptive role in the stress response, especially in generating genetic variability for adaptive evolution. TE activation by stressors may also lead to the notion, usually found in the literature, that any form of stress could activate all or the majority of TEs. In this review, we define what stress is. We then present and discuss RNA sequencing results from several studies demonstrating that stress does not trigger TE transcription broadly in Drosophila. An explanation for the LTR order of TEs being the most overexpressed is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fueyo R, Judd J, Feschotte C, Wysocka J (2022) Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol. https://doi.org/10.1038/s41580-022-00457-y

    Article  PubMed  Google Scholar 

  2. Zamudio N, Bourc’his D (2010) Transposable elements in the mammalian germline: a comfortable niche or a deadly trap? Heredity. https://doi.org/10.1038/hdy.2010.53

    Article  PubMed  Google Scholar 

  3. McClintock B (1984) The significance of responses of the genome to challenge. Science. https://doi.org/10.1126/science.15739260

    Article  PubMed  Google Scholar 

  4. Capy P, Gasperi G, Biémont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity. https://doi.org/10.1046/j.1365-2540.2000.00751.x

    Article  PubMed  Google Scholar 

  5. Fablet M, Vieira C (2011) Evolvability, epigenetics and transposable elements. Biomol Concepts. https://doi.org/10.1515/BMC.2011.035

    Article  PubMed  Google Scholar 

  6. Chénais B, Caruso A, Hiard S, Casse N (2012) The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene. https://doi.org/10.1016/j.gene.2012.07.042

    Article  PubMed  Google Scholar 

  7. Casacuberta E, González J (2013) The impact of transposable elements in environmental adaptation. Mol Ecol. https://doi.org/10.1111/mec.12170

    Article  PubMed  Google Scholar 

  8. Negi P, Rai AN, Suprasanna P (2016) Moving through the stressed genome: emerging regulatory roles for transposons in plant stress response. Front Plant Sci. https://doi.org/10.3389/fpls.2016.01448

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rey O, Danchin E, Mirouze M, Loot C, Blanchet S (2016) Adaptation to global change: a transposable element-epigenetics perspective. Trends Ecol Evol. https://doi.org/10.1016/j.tree.2016.03.013

    Article  PubMed  Google Scholar 

  10. Garza D, Medhora M, Koga A, Hartl DL (1991) Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics. https://doi.org/10.1093/genetics/128.2.303

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chakrani F, Capy P, David J (1993) Developmental temperature and somatic excision rate of mariner transposable element in three natural populations of Drosophila simulans. Genet Sel Evol. https://doi.org/10.1186/1297-9686-25-2-121

    Article  PubMed Central  Google Scholar 

  12. Jardim SS, Schuch AP, Pereira CM, Loreto ELS (2015) Effects of heat and UV radiation on the mobilization of transposon mariner-Mos1. Cell Stress Chaperones. https://doi.org/10.1007/s12192-015-0611-2

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lerat E, Fablet M, Modolo L, Lopez-Maestre H, Vieira C (2016) TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw953

    Article  PubMed Central  Google Scholar 

  14. Barrón MG, Fiston-Lavier A-S, Petrov DA, González J (2014) Population genomics of transposable elements in Drosophila. Annu Rev Genet. https://doi.org/10.1146/annurev-genet-120213-092359

    Article  PubMed  Google Scholar 

  15. Kaminker JS, Bergman CM, Kronmiller B, Carlson J, Svirskas R, Patel S et al (2002) The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective. Genome Biol. https://doi.org/10.1186/gb-2002-3-12-research0084

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet. https://doi.org/10.1038/nrg2165

    Article  PubMed  Google Scholar 

  17. Mérel V, Boulesteix M, Fablet M, Vieira C (2020) Transposable elements in Drosophila. Mob DNA. https://doi.org/10.1186/s13100-020-00213-z

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cowley M, Oakey RJ (2013) Transposable elements re-wire and fine-tune the transcriptome. PLoS Genet. https://doi.org/10.1371/journal.pgen.1003234

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brunet TDP, Doolittle WF (2015) Multilevel selection theory and the evolutionary functions of transposable elements. Genome Biol Evol. https://doi.org/10.1093/gbe/evv152

    Article  PubMed  PubMed Central  Google Scholar 

  20. Elliott TA, Linquist S, Gregory TR (2014) Conceptual and empirical challenges of ascribing functions to transposable elements. Am Nat. https://doi.org/10.1086/676588

    Article  PubMed  Google Scholar 

  21. de Souza MCP, Silva JN, Almeida C (2013) Differential detection of transposable elements between Saccharum species. Genet Mol Biol. https://doi.org/10.1590/S1415-47572013005000030

    Article  PubMed  PubMed Central  Google Scholar 

  22. Horváth V, Merenciano M, González J (2017) Revisiting the relationship between transposable elements and the eukaryotic stress response. Trends Genet. https://doi.org/10.1016/j.tig.2017.08.007

    Article  PubMed  Google Scholar 

  23. Secco D, Wang C, Shou H, Schultz MD, Chiarenza S, Nussaume L et al (2015) Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. Elife. https://doi.org/10.7554/eLife.09343

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cohen S, Gianaros PJ, Manuck SB (2016) A stage model of stress and disease. Perspect Psychol Sci. https://doi.org/10.1177/1745691616646305

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sun S, Zhou J (2018) Molecular mechanisms underlying stress response and adaptation: stress response and adaptation. Thorac Cancer. https://doi.org/10.1111/1759-7714.12579

    Article  PubMed  PubMed Central  Google Scholar 

  26. Le Guernic A, Geffard A, Rioult D, Bigot-Clivot A, Leprêtre M, Palos LM (2020) Cellular and molecular complementary immune stress markers for the model species Dreissena polymorpha. Fish Shellfish Immunol. https://doi.org/10.1016/j.fsi.2020.10.027

    Article  PubMed  Google Scholar 

  27. Stronach BE, Perrimon N (1999) Stress signaling in Drosophila. Oncogene. https://doi.org/10.1038/sj.onc.1203125

    Article  PubMed  Google Scholar 

  28. James BP, Staatz WD, Wilkinson ST, Meuillet E, Powis G (2009) Superoxide dismutase is regulated by LAMMER kinase in Drosophila and human cells. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2008.12.012

    Article  PubMed  Google Scholar 

  29. Dhama K, Latheef SK, Dadar M, Samad HA, Munjal A, Khandia R et al (2019) Biomarkers in stress related diseases/disorders: diagnostic, prognostic, and therapeutic values. Front Mol Biosci. https://doi.org/10.3389/fmolb.2019.00091

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tower J (2011) Heat shock proteins and Drosophila aging. Exp Gerontol. https://doi.org/10.1016/j.exger.2010.09.002

    Article  PubMed  Google Scholar 

  31. Aoyagi Blue Y, Kusumi J, Satake A (2021) Copy number analyses of DNA repair genes reveal the role of poly(ADP-ribose) polymerase (PARP) in tree longevity. IScience. https://doi.org/10.1016/j.isci.2021.102779

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bordet G, Lodhi N, Guo D, Kossenkov A, Tulin AV (2020) Poly(ADP-ribose) polymerase 1 in genome-wide expression control in Drosophila. Sci Rep. https://doi.org/10.1038/s41598-020-78116-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lubawy J, Urbański A, Colinet H, Pflüger H-J, Marciniak P (2020) Role of the insect neuroendocrine system in the response to cold stress. Front Physiol. https://doi.org/10.3389/fphys.2020.00376

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nässel DR, Zandawala M (2019) Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol. https://doi.org/10.1016/j.pneurobio.2019.02.003

    Article  PubMed  Google Scholar 

  35. Khansari DN, Murgo AJ, Faith RE (1990) Effects of stress on the immune system. Immunol Today. https://doi.org/10.1016/0167-5699(90)90069-L

    Article  PubMed  Google Scholar 

  36. Schedlowski M, Schmidt RE (1996) Streβ und Immunsystem. Naturwissenschaften. https://doi.org/10.1007/BF01143326

    Article  PubMed  Google Scholar 

  37. Dragoş D, Tănăsescu MD (2010) The effect of stress on the defense systems. J Med Life 3:10–18

    PubMed  PubMed Central  Google Scholar 

  38. Hemmer LW, Dias GB, Smith B, Van Vaerenberghe K, Howard A, Bergman CM et al (2020) Hybrid dysgenesis in Drosophila virilis results in clusters of mitotic recombination and loss-of-heterozygosity but leaves meiotic recombination unaltered. Mob DNA. https://doi.org/10.1186/s13100-020-0205-0

    Article  PubMed  PubMed Central  Google Scholar 

  39. Petrov DA, Schutzman JL, Hartl DL, Lozovskaya ER (1995) Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.92.17.8050

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chen H, Zheng X, Xiao D, Zheng Y (2016) Age-associated de-repression of retrotransposons in the Drosophila fat body, its potential cause and consequence. Aging Cell. https://doi.org/10.1111/acel.12465

    Article  PubMed  PubMed Central  Google Scholar 

  41. Erwin AA, Blumenstiel JP (2019) Aging in the Drosophila ovary: contrasting changes in the expression of the piRNA machinery and mitochondria but no global release of transposable elements. BMC Genomics. https://doi.org/10.1186/s12864-019-5668-3

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mombach DM, Fontoura Gomes TMF, da Silva MM, Loreto ELS (2022) Molecular and biological effects of cisplatin in Drosophila. Compar Biochem Physiol C. https://doi.org/10.1016/j.cbpc.2021.109229

    Article  Google Scholar 

  43. Oliveira DS, Rosa MT, Vieira C, Loreto ELS (2021) Oxidative and radiation stress induces transposable element transcription in Drosophila melanogaster. J Evol Biol. https://doi.org/10.1111/jeb.13762

    Article  PubMed  Google Scholar 

  44. Salces-Ortiz J, Vargas-Chavez C, Guio L, Rech GE, González J (2020) Transposable elements contribute to the genomic response to insecticides in Drosophila melanogaster. Philos Trans R Soc B. https://doi.org/10.1098/rstb.2019.0341

    Article  Google Scholar 

  45. Stoffel TJR, Segatto AL, Silva MM, Prestes A, Barbosa NBV, Rocha JBT et al (2020) Cyclophosphamide in Drosophila promotes genes and transposable elements differential expression and mitochondrial dysfunction. Compar Biochem Physiol C. https://doi.org/10.1016/j.cbpc.2020.108718

    Article  Google Scholar 

  46. Biémont C, Aouar A, Arnault C (1987) Genome reshuffling of the copia element in an inbred line of Drosophila melanogaster. Nature. https://doi.org/10.1038/329742a0

    Article  PubMed  Google Scholar 

  47. Chuong EB, Elde NC, Feschotte C (2017) Regulatory activities of transposable elements: from conflicts to benefits. Nat Rev Genet. https://doi.org/10.1038/nrg.2016.139

    Article  PubMed  Google Scholar 

  48. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet. https://doi.org/10.1146/annurev.genet.33.1.479

    Article  PubMed  Google Scholar 

  49. Grandbastien M-A, Audeon C, Bonnivard E, Casacuberta JM, Chalhoub B, Costa A-PP et al (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res. https://doi.org/10.1159/000084957

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research Grants and fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (421255/2018-8) and Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elgion Lucio Silva Loreto.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mombach, D.M., da Fontoura Gomes, T.M.F. & Loreto, E.L.S. Stress does not induce a general transcription of transposable elements in Drosophila. Mol Biol Rep 49, 9033–9040 (2022). https://doi.org/10.1007/s11033-022-07839-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07839-7

Keywords

Navigation