Skip to main content
Log in

The role of aquaporin 4 in brain tumors: implications for pathophysiology, diagnosis and therapy

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Primary brain tumors are a heterogeneous group of tumors that arise from cells intrinsic to the central nervous system (CNS). Aquaporin-4 (AQP4) has been implicated in the pathogenesis of brain tumors. Previous reports have documented a relationship between AQP4 and several molecular pathways associated with the etiology of brain tumors, such as apoptosis, invasion and cell migration. AQP4 affects apoptosis via cytochrome C, Bad and Bcl-2, as well as invasion and migration via IDO1/TDO–Kyn–AhR axis, lncRNA LINC00461, miR-216a, miRNA-320a and MMPs. In addition, inhibition of AQP4 mitigates the progression of brain tumors. This review summarizes current knowledge and evidence regarding the relationship between AQP4 and brain tumors, and the mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Lah TT, Novak M, Breznik B (2020) Brain malignancies: glioblastoma and brain metastases. Semin Cancer Biol, pp 262–273

  2. Lapointe S, Perry A, Butowski NA (2018) Primary brain tumours in adults. The Lancet 392:432–446

    Article  Google Scholar 

  3. Ostrom QT, Patil N, Cioffi G, Waite K, Kruchko C, Barnholtz-Sloan JS (2020) CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2013–2017. Neurooncology 22:iv1–iv96

    Google Scholar 

  4. Komori T (2017) The 2016 WHO classification of tumours of the central nervous system: the major points of revision. Neurol Med Chir 57:301–311

    Article  Google Scholar 

  5. Louis DN, Perry A, Reifenberger G, Von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–820

    Article  PubMed  Google Scholar 

  6. Haumann R, Videira JC, Kaspers GJ, van Vuurden DG, Hulleman E (2020) Overview of current drug delivery methods across the blood–Brain barrier for the treatment of primary brain tumors.CNS drugs:1–11

  7. Elhend SB, Belfquih H, Hammoune N, Mouhsine A (2019) Lipoma with agenesis of corpus callosum: 2 case reports and literature review. World Neurosurg 125:123–125

    Article  PubMed  Google Scholar 

  8. Kirby S, Purdy RA (2014) Headaches and brain tumors. Neurol Clin 32:423–432

    Article  PubMed  Google Scholar 

  9. Giulioni M, Marucci G, Martinoni M, Marliani AF, Toni F, Bartiromo F, Volpi L, Riguzzi P, Bisulli F, Naldi I (2014) Epilepsy associated tumors. World J Clin Cases 2:623

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boire A, Brastianos PK, Garzia L, Valiente M (2020) Brain metastasis. Nat Rev Cancer 20:4–11

    Article  CAS  PubMed  Google Scholar 

  11. Idbaih A, Duran-Peña A, Bonnet C, Ducray F (2015) Input of molecular analysis in medical management of primary brain tumor patients. Rev Neurol 171:457–465

    Article  CAS  PubMed  Google Scholar 

  12. Shah K, Tang Y, Breakefield X, Weissleder R (2003) Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 22:6865

    Article  CAS  PubMed  Google Scholar 

  13. Sen E (2011) Targeting inflammation-induced transcription factor activation: an open frontier for glioma therapy. Drug Discov Today 16:1044–1051

    Article  CAS  PubMed  Google Scholar 

  14. Zhang H, Kong X, Kang J, Su J, Li Y, Zhong J, Sun L (2009) Oxidative stress induces parallel autophagy and mitochondria dysfunction in human glioma U251 cells. Toxicol Sci 110:376–388

    Article  CAS  PubMed  Google Scholar 

  15. Demuth T, Berens ME (2004) Molecular mechanisms of glioma cell migration and invasion. J Neuro-oncol 70:217–228

    Article  Google Scholar 

  16. Sheng Z, Li L, Zhu LJ, Smith TW, Demers A, Ross AH, Moser RP, Green MR (2010) A genome-wide RNA interference screen reveals an essential CREB3L2-ATF5-MCL1 survival pathway in malignant glioma with therapeutic implications. Nat Med 16:671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tamtaji OR, Mirzaei H, Shamshirian A, Shamshirian D, Behnam M, Asemi Z (2020) New trends in glioma cancer therapy: Targeting Na+/H + exchangers. J Cell Physiol 235:658–665

    Article  CAS  PubMed  Google Scholar 

  18. Maugeri R, Schiera G, Di Liegro CM, Fricano A, Iacopino DG, Di Liegro I (2016) Aquaporins and brain tumors. Int J Mol Sci 17:1029

    Article  PubMed Central  Google Scholar 

  19. Day RE, Kitchen P, Owen DS, Bland C, Marshall L, Conner AC, Bill RM, Conner MT (2014) Human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta Gen Subj 1840:1492–1506

    Article  CAS  Google Scholar 

  20. Halsey AM, Conner AC, Bill RM, Logan A, Ahmed Z (2018) Aquaporins and their regulation after spinal cord injury. Cells 7:174

    Article  CAS  PubMed Central  Google Scholar 

  21. Papadopoulos MC, Saadoun S (2015) Key roles of aquaporins in tumor biology. Biochim Biophys Acta Biomembr 1848:2576–2583

    Article  CAS  Google Scholar 

  22. Vincent T, Saikali P, Cayrol R, Roth AD, Bar-Or A, Prat A, Antel JP (2008) Functional consequences of neuromyelitis optica-IgG astrocyte interactions on blood-brain barrier permeability and granulocyte recruitment. J Immunol 181:5730–5737

    Article  CAS  PubMed  Google Scholar 

  23. Hubbard JA, Szu JI, Binder DK (2018) The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 136:118–129

    Article  CAS  PubMed  Google Scholar 

  24. Verkman A, Binder DK, Bloch O, Auguste K, Papadopoulos MC (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta Biomembr 1758:1085–1093

    Article  CAS  Google Scholar 

  25. Tamtaji OR, Behnam M, Pourattar MA, Jafarpour H, Asemi Z (2019) Aquaporin 4: A key player in Parkinson’s disease. J Cell Physiol 234:21471–21478

    Article  CAS  PubMed  Google Scholar 

  26. Silva I, Silva J, Ferreira R, Trigo D (2021) Glymphatic system, AQP4, and their implications in Alzheimer’s disease. Neurol Res Pract 3:1–9

    Article  Google Scholar 

  27. Dadgostar E, Tajiknia V, Shamsaki N, Naderi-Taheri M, Aschner M, Mirzaei H, Tamtaji OR (2021) Aquaporin 4 and brain-related disorders: Insights into its apoptosis roles: Aquaporin 4 and Apoptosis. EXCLI J 20:983–994

    PubMed  PubMed Central  Google Scholar 

  28. Ding T, Zhou Y, Sun K, Jiang W, Li W, Liu X, Tian C, Li Z, Ying G, Fu L (2013) Knockdown a water channel protein, aquaporin-4, induced glioblastoma cell apoptosis. PLoS ONE 8:e66751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xiong W, Ran J, Jiang R, Guo P, Shi X, Li H, Lv X, Li J, Chen D (2018) miRNA-320a inhibits glioma cell invasion and migration by directly targeting aquaporin 4. Oncol Rep 39:1939–1947

    CAS  PubMed  Google Scholar 

  30. Molina EJS, Ardon H, Schroeteler J, Klingenhöfer M, Holling M, Wölfer J, Fischer B, Stummer W, Ewelt C (2013) Aquaporin-4 in glioma and metastatic tissues harboring 5-aminolevulinic acid-induced porphyrin fluorescence. Clin Neurol Neurosurg 115:2075–2081

    Article  Google Scholar 

  31. Tan Y, Zhang H, Zhao R-F, Wang X-C, Qin J-B, Wu X-F (2016) Comparison of the values of MRI diffusion kurtosis imaging and diffusion tensor imaging in cerebral astrocytoma grading and their association with aquaporin-4. Neurol India 64:265

    Article  PubMed  Google Scholar 

  32. Ding T, Ma Y, Li W, Liu X, Ying G, Fu L, Gu F (2011) Role of aquaporin-4 in the regulation of migration and invasion of human glioma cells. Int J Oncol 38:1521–1531

    CAS  PubMed  Google Scholar 

  33. Ng WH, Hy JW, Tan WL, Liew D, Lim T, Ang BT, Ng I (2009) Aquaporin-4 expression is increased in edematous meningiomas. J Clin Neurosci 16:441–443

    Article  CAS  PubMed  Google Scholar 

  34. Isoardo G, Morra I, Chiarle G, Audrito V, Deaglio S, Melcarne A, Junemann C, Naddeo M, Cogoni M, Valentini MC (2012) Different aquaporin-4 expression in glioblastoma multiforme patients with and without seizures. Mol Med 18:1147–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fallier-Becker P, Nieser M, Wenzel U, Ritz R, Noell S (2016) Is upregulation of aquaporin 4-M1 isoform responsible for the loss of typical orthogonal arrays of particles in astrocytomas? Int J Mol Sci 17:1230

    Article  PubMed Central  Google Scholar 

  36. Tan Y, Zhang H, Wang X-c, Qin J-b, Wang L (2018) The value of multi ultra high-b-value DWI in grading cerebral astrocytomas and its association with aquaporin-4. The Br J Radiol 91:20170696

    Article  PubMed  Google Scholar 

  37. Schob S, Surov A, Wienke A, Meyer HJ, Spielmann RP, Fiedler E (2017) Correlation between aquaporin 4 expression and different DWI parameters in grade I meningioma. Mol Imaging Biol 19:138–142

    Article  CAS  PubMed  Google Scholar 

  38. Tan W, Wong J, Liew D, Ng I (2004) Aquaporin-4 is correlated with peri-tumoural oedema in meningiomas. Ann Acad Med Singap 33:S87–S89

    CAS  PubMed  Google Scholar 

  39. Liu Y, Bai R (2022) Shutter speed-DCE MRI characterizing the AQP4 regulated water exchange in glioma.Brain Tumor Research and Treatment10

  40. Valente O, Messina R, Ingravallo G, Bellitti E, Zimatore DS, de Gennaro L, Abbrescia P, Pati R, Palazzo C, Nicchia GP (2022) Alteration of the translational readthrough isoform AQP4ex induces redistribution and downregulation of AQP4 in human glioblastoma. Cell Mol Life Sci 79:1–15

    Article  Google Scholar 

  41. Mamivand A, Bayat S, Maghrouni A, Shabani S, Khoshnevisan A, Saffar H, Tabrizi M (2022) Data mining of bulk and single-cell RNA sequencing introduces OBI1-AS1 as an astrocyte marker with possible role in glioma recurrence and progression. Clin Epigenetics 14:1–14

    Article  Google Scholar 

  42. Ide M, Jimbo M, Kubo O, Yamamoto M, Takeyama E, Imanaga H (1994) Peritumoral brain edema and cortical damage by meningioma. Brain Edema IX, pp 369–372

  43. Wang X-F, Lin G-S, Lin Z-X, Chen Y-P, Chen Y, Zhang J-D, Tan W-L (2014) Association of pSTAT3-VEGF signaling pathway with peritumoral edema in newly diagnosed glioblastoma: an immunohistochemical study. Int J Clin Eexp Pathol 7:6133

    Google Scholar 

  44. Markovic M, Antunovic V, Milenkovic S, Zivkovic N (2013) Prognostic value of peritumoral edema and angiogenesis in intracranial meningioma surgery. J BUON 18:430–436

    CAS  PubMed  Google Scholar 

  45. Hoque MO, Soria J-C, Woo J, Lee T, Lee J, Jang SJ, Upadhyay S, Trink B, Monitto C, Desmaze C (2006) Aquaporin 1 is overexpressed in lung cancer and stimulates NIH-3T3 cell proliferation and anchorage-independent growth. Am J Pathol 168:1345–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. Journ J Cereb Blood Flow Metab 22:367–378

    Article  CAS  Google Scholar 

  47. Saadoun S, Papadopoulos M, Davies D, Krishna S, Bell B (2002) Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 72:262–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gawlitza M, Fiedler E, Schob S, Hoffmann K-T, Surov A (2017) Peritumoral brain edema in meningiomas depends on aquaporin-4 expression and not on tumor grade, tumor volume, cell count, or Ki-67 labeling index. Mol Imaging Biol 19:298–304

    Article  CAS  PubMed  Google Scholar 

  49. Faropoulos K, Polia A, Tsakona C, Pitaraki E, Moutafidi A, Gatzounis G, Assimakopoulou M (2021) Evaluation of AQP4/TRPV4 Channel Co-expression, Microvessel Density, and its Association with Peritumoral Brain Edema in Intracranial Meningiomas.J Mol Neurosci:1–10

  50. Li G, Liu X, Liu Z, Su Z (2015) Interactions of connexin 43 and aquaporin-4 in the formation of glioma-induced brain edema. Mol Med Rep 11:1188–1194

    Article  CAS  PubMed  Google Scholar 

  51. Yang L, Wang X, Zhen S, Zhang S, Kang D, Lin Z (2012) Aquaporin-4 upregulated expression in glioma tissue is a reaction to glioma-associated edema induced by vascular endothelial growth factor. Oncol Rep 28:1633–1638

    Article  PubMed  Google Scholar 

  52. Wang P, Ni R, Chen M, Mou K, Mao Q, Liu Y (2011) Expression of aquaporin-4 in human supratentorial meningiomas with peritumoral brain edema and correlation of VEGF with edema formation. Genet Mol Res 10:2165–2171

    Article  CAS  PubMed  Google Scholar 

  53. Levy M, Barletta S, Huang H, Grossman SA, Rodriguez FJ, Ellsworth SG, Dzaye O, Holdhoff M (2019) Aquaporin-4 Expression Patterns in Glioblastoma Pre-Chemoradiation and at Time of Suspected Progression. Cancer Invest 37:67–72

    Article  CAS  PubMed  Google Scholar 

  54. Bolteus AJ, Berens ME, Pilkington GJ (2001) Migration and invasion in brain neoplasms. Curr Neurol Neurosci Rep 1:225–232

    Article  CAS  PubMed  Google Scholar 

  55. Trylcova J, Busek P, Smetana K, Balaziova E, Dvorankova B, Mifkova A, Sedo A (2015) Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. T Tumor Biol 36:5873–5879

    Article  CAS  Google Scholar 

  56. Wang Y, Gan G, Wang B, Wu J, Cao Y, Zhu D, Xu Y, Wang X, Han H, Li X (2017) Cancer-associated fibroblasts promote irradiated cancer cell recovery through autophagy. EBioMedicine 17:45–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen L-b, Zhu S-p, Liu T-p, Zhao H, Chen P-f, Duan Y-j, Hu R (2021) Cancer Associated Fibroblasts Promote Renal Cancer Progression Through a TDO/Kyn/AhR Dependent Signaling Pathway. Front Oncol 11:905

    Google Scholar 

  58. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I, Trump S, Schumacher T, Jestaedt L, Schrenk D, Weller M (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203

    Article  CAS  PubMed  Google Scholar 

  59. Du L, Xing Z, Tao B, Li T, Yang D, Li W, Zheng Y, Kuang C, Yang Q (2020) Both IDO1 and TDO contribute to the malignancy of gliomas via the Kyn–AhR–AQP4 signaling pathway. Signal Transduct Target Ther 5:1–13

    Article  Google Scholar 

  60. Nie J-H, Li T-X, Zhang X-Q, Liu J (2019) Roles of non-coding RNAs in normal human brain development, brain tumor, and neuropsychiatric disorders. Non-coding RNA 5:36

    Article  CAS  PubMed Central  Google Scholar 

  61. Guo T, Feng Y, Liu Q, Yang X, Jiang T, Chen Y, Zhang Q (2014) MicroRNA-320a suppresses in GBM patients and modulates glioma cell functions by targeting IGF-1R. Tumor Biol 35:11269–11275

    Article  CAS  Google Scholar 

  62. Yang Y, Ren M, Song C, Li D, Soomro SH, Xiong Y, Zhang H, Fu H (2017) LINC00461, a long non-coding RNA, is important for the proliferation and migration of glioma cells. Oncotarget 8:84123

    Article  PubMed  PubMed Central  Google Scholar 

  63. Peng Y, Wu W, Shang Z, Li W, Chen S (2020) Inhibition of lncRNA LINC00461/miR-216a/aquaporin 4 pathway suppresses cell proliferation, migration, invasion, and chemoresistance in glioma. Open Life Sci 15:532–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sawaya RE, Yamamoto M, Gokaslan ZL, Wang SW, Mohanam S, Fuller GN, McCutcheon IE, Stetler-Stevenson WG, Nicolson GL, Rao JS (1996) Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastasis 14:35–42

    Article  CAS  PubMed  Google Scholar 

  65. Dai B, Kang S-H, Gong W, Liu M, Aldape KD, Sawaya R, Huang S (2007) Aberrant FoxM1B expression increases matrix metalloproteinase-2 transcription and enhances the invasion of glioma cells. Oncogene 26:6212–6219

    Article  CAS  PubMed  Google Scholar 

  66. Kachra Z, Beaulieu E, Delbecchi L, Mousseau N, Berthelet F, Moumdjian R, Del Maestro R, Béliveau R (1999) Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin Exp Metastasis 17:555–566

    Article  CAS  PubMed  Google Scholar 

  67. Reszec J, Hermanowicz A, Rutkowski R, Turek G, Mariak Z, Chyczewski L (2015) Expression of MMP-9 and VEGF in meningiomas and their correlation with peritumoral brain edema. BioMed Res Int 2015

  68. Zhao W-J, Zhang W, Li G-L, Cui Y, Shi Z-F, Yuan F (2012) Differential expression of MMP-9 and AQP4 in human glioma samples. Folia Neuropathol 50:176–186

    PubMed  Google Scholar 

  69. Montana V, Sontheimer H (2011) Bradykinin promotes the chemotactic invasion of primary brain tumors. J Neurosci 31:4858–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nicoletti NF, Sénécal J, da Silva VD, Roxo MR, Ferreira NP, de Morais RLT, Pesquero JB, Campos MM, Couture R, Morrone FB (2017) Primary role for kinin B 1 and B 2 receptors in glioma proliferation. Mol Neurobiol 54:7869–7882

    Article  CAS  PubMed  Google Scholar 

  71. Sun D-P, Lee Y-W, Chen J-T, Lin Y-W, Chen R-M (2020) The bradykinin-BDKRB1 axis regulates aquaporin 4 gene expression and consequential migration and invasion of malignant glioblastoma cells via a Ca2+-MEK1-ERK1/2-NF-κB Mechanism. Cancers 12:667

    Article  CAS  PubMed Central  Google Scholar 

  72. Simone L, Pisani F, Mola MG, De Bellis M, Merla G, Micale L, Frigeri A, Vescovi AL, Svelto M, Nicchia GP (2019) AQP4 aggregation state is a determinant for glioma cell fate. Cancer Res 79:2182–2194

    Article  CAS  PubMed  Google Scholar 

  73. Rajaraman P, Wang SS, Rothman N, Brown MM, Black PM, Fine HA, Loeffler JS, Selker RG, Shapiro WR, Chanock SJ (2007) Polymorphisms in apoptosis and cell cycle control genes and risk of brain tumors in adults. Cancer Epidemiol Prev Biomark 16:1655–1661

    Article  CAS  Google Scholar 

  74. Zander T, Kraus JA, Grommes C, Schlegel U, Feinstein D, Klockgether T, Landreth G, Koenigsknecht J, Heneka MT (2002) Induction of apoptosis in human and rat glioma by agonists of the nuclear receptor PPARγ. J Neurochem 81:1052–1060

    Article  CAS  PubMed  Google Scholar 

  75. Puduvalli VK, Li JT, Chen L, McCutcheon IE (2005) Induction of apoptosis in primary meningioma cultures by fenretinide. Cancer Res 65:1547–1553

    Article  CAS  PubMed  Google Scholar 

  76. Amiry-Moghaddam M (2019) AQP4 and the Fate of Gliomas. Cancer Res 79:2810–2811

    Article  CAS  PubMed  Google Scholar 

  77. Yang I, Tihan T, Han SJ, Wrensch MR, Wiencke J, Sughrue ME, Parsa AT (2010) CD8 + T-cell infiltrate in newly diagnosed glioblastoma is associated with long-term survival. J Clin Neurosci 17:1381–1385

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mauldin IS, Jo J, Wages NA, Yogendran LV, Mahmutovic A, Young SJ, Lopes MB, Slingluff CL, Erickson LD, Fadul CE (2021) Proliferating CD8 + T Cell Infiltrates Are Associated with Improved Survival in Glioblastoma. Cells 10:3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zou S, Lan Y-L, Ren T, Li X, Zhang L, Wang H, Wang X (2021) A Bioinformatics Analysis of the Potential Roles of Aquaporin 4 in Human Brain Tumors: An Immune-Related Process. Front Pharmacol 12:1271

    Article  Google Scholar 

  80. Bunevicius A, Laws ER, Deltuva V, Tamasauskas A (2017) Association of thyroid hormone concentrations with quality of life of primary brain tumor patients: a pilot study. J Neuro-Oncol 131:385–391

    Article  CAS  Google Scholar 

  81. Costa LE, Clementino-Neto J, Mendes CB, Franzon NH, Costa EdO, Moura-Neto V, Ximenes-da-Silva A (2019) Evidence of aquaporin 4 regulation by thyroid hormone during mouse brain development and in cultured human glioblastoma multiforme cells. Front Neurosci 13:317

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yuan B, Shimada R, Xu K, Han L, Si N, Zhao H, Bian B, Hayashi H, Okazaki M, Takagi N (2019) Multiple cytotoxic effects of gamabufotalin against human glioblastoma cell line U-87. Chem Biol Interact 314:108849

    Article  CAS  PubMed  Google Scholar 

  83. Lan YL, Chen C, Wang X, Lou JC, Xing JS, Zou S, Hu JL, Lyu W, Zhang B (2020) Gamabufotalin induces a negative feedback loop connecting ATP1A3 expression and the AQP4 pathway to promote temozolomide sensitivity in glioblastoma cells by targeting the amino acid Thr794. Cell Prolif 53:e12732

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No specific source of funding is associated with this work.

Author information

Authors and Affiliations

Authors

Contributions

MB, AM, MA, ED, FZ-RN, MP, MR, HM, MA and O-RT contributed in the conception or design of the work and drafting of the manuscript. All authors confirmed the final version for submission.

Corresponding authors

Correspondence to Hamed Mirzaei or Omid Reza Tamtaji.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behnam, M., Motamedzadeh, A., Aalinezhad, M. et al. The role of aquaporin 4 in brain tumors: implications for pathophysiology, diagnosis and therapy. Mol Biol Rep 49, 10609–10615 (2022). https://doi.org/10.1007/s11033-022-07656-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07656-y

Keywords

Navigation