Skip to main content

Advertisement

Log in

BAG2 prevents Tau hyperphosphorylation and increases p62/SQSTM1 in cell models of neurodegeneration

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Protein aggregates are pathological hallmarks of many neurodegenerative diseases, however the physiopathological role of these aggregates is not fully understood. Protein quality control has a pivotal role for protein homeostasis and depends on specific chaperones. The co-chaperone BAG2 can target phosphorylated Tau for degradation by an ubiquitin-independent pathway, although its possible role in autophagy was not yet elucidated. In view of this, the aim of the present study was to investigate the association among protein aggregation, autophagy and BAG2 levels in cultured cells from hippocampus and locus coeruleus as well as in SH-SY5Y cell line upon different protein aggregation scenarios induced by rotenone, which is a flavonoid used as pesticide and triggers neurodegeneration.

Methods and results

The present study showed that rotenone exposure at 0.3 nM for 48 h impaired autophagy prior to Tau phosphorylation at Ser199/202 in hippocampus but not in locus coeruleus cells, suggesting that distinct neuron cells respond differently to rotenone toxicity. Rotenone induced Tau phosphorylation at Ser199/202, together with a decrease in the endogenous BAG2 protein levels in SH-SY5Y and hippocampus cell culture, which indicates that rotenone and Tau hyperphosphorylation can affect this co-chaperone. Finally, it has been shown that BAG2 overexpression, increased p62/SQSTM1 levels in cells from hippocampus and locus coeruleus, stimulated LC3II recycling as well as prevented the raise of phosphorylated Tau at Ser199/202 in hippocampus.

Conclusions

Results demonstrate a possible role for BAG2 in degradation pathways of specific substrates and its importance for the study of cellular aspects of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be available upon request.

Code availability

Not applicable.

References

  1. Grune T, Jung T, Merker K, Davies KJA (2004) Decreased proteolysis caused by protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and ‘aggresomes’ during oxidative stress, aging, and disease. Int J Biochem Cell Biol 36:2519–2530. https://doi.org/10.1016/j.biocel.2004.04.020

    Article  CAS  PubMed  Google Scholar 

  2. Yamamura Y, Kuzuhara S, Kondo K et al (1998) Clinical, pathologic and genetic studies on autosomal recessive early-onset parkinsonism with diurnal fluctuation. Parkinsonism Relat Disord 4:65–72. https://doi.org/10.1016/S1353-8020(98)00015-7

    Article  CAS  PubMed  Google Scholar 

  3. Tolmasov M, Djaldetti R, Lev N, Gilgun-Sherki Y (2016) Pathological and clinical aspects of alpha/beta synuclein in Parkinson’s disease and related disorders. Expert Rev Neurother 16:505–513. https://doi.org/10.1586/14737175.2016.1164600

    Article  CAS  PubMed  Google Scholar 

  4. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science (80–) 276:2045–2047. https://doi.org/10.1126/science.276.5321.2045

    Article  CAS  Google Scholar 

  5. Marmolino D, Foerch P, Atienzar FA et al (2016) Alpha synuclein dimers and oligomers are increased in overexpressing conditions in vitro and in vivo. Mol Cell Neurosci 71:92–101. https://doi.org/10.1016/j.mcn.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  6. Buée L, Bussière T, Buée-Scherrer V et al (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders11These authors contributed equally to this work. Brain Res Rev 33:95–130. https://doi.org/10.1016/S0165-0173(00)00019-9

    Article  PubMed  Google Scholar 

  7. Kamenetz F, Tomita T, Hsieh H et al (2003) APP processing and synaptic function. Neuron 37:925–937. https://doi.org/10.1016/S0896-6273(03)00124-7

    Article  CAS  PubMed  Google Scholar 

  8. De Vos KJ, Grierson AJ, Ackerley S, Miller CCJ (2008) Role of axonal transport in neurodegenerative diseases. Annu Rev Neurosci 31:151–173. https://doi.org/10.1146/annurev.neuro.31.061307.090711

    Article  CAS  PubMed  Google Scholar 

  9. Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659. https://doi.org/10.1038/ncomms6659

    Article  CAS  PubMed  Google Scholar 

  10. Aman Y, Schmauck-Medina T, Hansen M et al (2021) Autophagy in healthy aging and disease. Nat Aging 1:634–650. https://doi.org/10.1038/s43587-021-00098-4

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hansen M, Rubinsztein DC, Walker DW (2018) Autophagy as a promoter of longevity: insights from model organisms. Nat Rev Mol Cell Biol 19:579–593. https://doi.org/10.1038/s41580-018-0033-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326. https://doi.org/10.1016/j.cell.2010.01.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pankiv S, Clausen TH, Lamark T et al (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145. https://doi.org/10.1074/jbc.M702824200

    Article  CAS  PubMed  Google Scholar 

  14. Kampinga HH, Craig EA (2010) The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 11:579–592. https://doi.org/10.1038/nrm2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu Z, Page RC, Gomes MM et al (2008) Structural basis of nucleotide exchange and client binding by the Hsp70 cochaperone Bag2. Nat Struct Mol Biol 15:1309–1317. https://doi.org/10.1038/nsmb.1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Qin L, Guo J, Zheng Q, Zhang H (2016) BAG2 structure, function and involvement in disease. Cell Mol Biol Lett 21:18. https://doi.org/10.1186/s11658-016-0020-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ji C, Tang M, Zeidler C et al (2019) BAG3 and SYNPO (synaptopodin) facilitate phospho-MAPT/Tau degradation via autophagy in neuronal processes. Autophagy 15:1199–1213. https://doi.org/10.1080/15548627.2019.1580096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arndt V, Daniel C, Nastainczyk W et al (2005) BAG-2 acts as an Inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol Biol Cell 16:5891–5900. https://doi.org/10.1091/mbc.e05-07-0660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carrettiero DC, Hernandez I, Neveu P et al (2009) The cochaperone BAG2 sweeps paired helical filament- insoluble Tau from the microtubule. J Neurosci 29:2151–2161. https://doi.org/10.1523/JNEUROSCI.4660-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santiago FE, Almeida MC, Carrettiero DC (2015) BAG2 Is Repressed by NF-κB signaling, and its overexpression is sufficient to shift Aβ1-42 from neurotrophic to neurotoxic in undifferentiated SH-SY5Y neuroblastoma. J Mol Neurosci 57:83–89. https://doi.org/10.1007/s12031-015-0579-5

    Article  CAS  PubMed  Google Scholar 

  21. Guo JF, He S, Kang JF et al (2015) Involvement of Bcl-2-associated athanogene (BAG)-family proteins in the neuroprotection by rasagiline. Int J Clin Exp Med 8:18158–18164

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Qu D, Hage A, Don-Carolis K et al (2015) BAG2 gene-mediated regulation of PINK1 protein is critical for mitochondrial translocation of PARKIN and neuronal survival. J Biol Chem 290:30441–30452. https://doi.org/10.1074/jbc.M115.677815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siuda J, Jasinska-Myga B, Boczarska-Jedynak M et al (2014) Early-onset Parkinson’s disease due to PINK1 p. Q456X mutation—Clinical and functional study. Parkinsonism Relat Disord 20:1274–1278. https://doi.org/10.1016/j.parkreldis.2014.08.019

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liang S, Wang F, Bao C et al (2020) BAG2 ameliorates endoplasmic reticulum stress-induced cell apoptosis in Mycobacterium tuberculosis-infected macrophages through selective autophagy. Autophagy 16:1453–1467. https://doi.org/10.1080/15548627.2019.1687214

    Article  CAS  PubMed  Google Scholar 

  25. Radad K, Gille G, Rausch W-D (2008) Dopaminergic neurons are preferentially sensitive to long-term rotenone toxicity in primary cell culture. Toxicol In Vitro 22:68–74. https://doi.org/10.1016/j.tiv.2007.08.015

    Article  CAS  PubMed  Google Scholar 

  26. Ullrich C, Humpel C (2009) Rotenone induces cell death of cholinergic neurons in an organotypic co-culture brain slice model. Neurochem Res 34:2147–2153. https://doi.org/10.1007/s11064-009-0014-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xie C, Zhuang X-X, Niu Z et al (2022) Amelioration of Alzheimer’s disease pathology by mitophagy inducers identified via machine learning and a cross-species workflow. Nat Biomed Eng 6:76–93. https://doi.org/10.1038/s41551-021-00819-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chaves RS, Kazi AI, Silva CM et al (2016) Presence of insoluble Tau following rotenone exposure ameliorates basic pathways associated with neurodegeneration. IBRO Reports. https://doi.org/10.1016/j.ibror.2016.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  29. Demers G, Griffin G, De Vroey G et al (2006) Harmonization of animal care and use guidance. Science (80–) 312:700–701. https://doi.org/10.1126/science.1124036

    Article  CAS  Google Scholar 

  30. Hongo H, Kihara T, Kume T et al (2012) Glycogen synthase kinase-3β activation mediates rotenone-induced cytotoxicity with the involvement of microtubule destabilization. Biochem Biophys Res Commun 426:94–99. https://doi.org/10.1016/j.bbrc.2012.08.042

    Article  CAS  PubMed  Google Scholar 

  31. Kivell BM, McDonald FJ, Miller JH (2001) Method for serum-free culture of late fetal and early postnatal rat brainstem neurons. Brain Res Protoc 6:91–99. https://doi.org/10.1016/S1385-299X(00)00037-4

    Article  CAS  Google Scholar 

  32. Chaves RS, Melo TQ, Martins SA, Ferrari MFR (2010) Protein aggregation containing beta-amyloid, alpha-synuclein and hyperphosphorylated tau in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure. BMC Neurosci. https://doi.org/10.1186/1471-2202-11-144

    Article  PubMed  PubMed Central  Google Scholar 

  33. Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3:452–460. https://doi.org/10.4161/auto.4451

    Article  CAS  PubMed  Google Scholar 

  34. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3

    Article  CAS  PubMed  Google Scholar 

  35. de Paula CAD, Santiago FE, de Oliveira ASA et al (2016) The co-chaperone BAG2 mediates cold-induced accumulation of phosphorylated Tau in SH-SY5Y cells. Cell Mol Neurobiol 36:593–602. https://doi.org/10.1007/s10571-015-0239-x

    Article  CAS  PubMed  Google Scholar 

  36. Pei J-J, Braak E, Braak H et al (2001) Localization of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer’s disease brains at different stages of neurofibrillary degeneration. J Alzheimer’s Dis 3:41–48. https://doi.org/10.3233/JAD-2001-3107

    Article  CAS  Google Scholar 

  37. Huang Q, Figueiredo-Pereira ME (2010) Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis 15:1292–1311. https://doi.org/10.1007/s10495-010-0466-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wolfe DM, Lee J, Kumar A et al (2013) Autophagy failure in Alzheimer’s disease and the role of defective lysosomal acidification. Eur J Neurosci 37:1949–1961. https://doi.org/10.1111/ejn.12169

    Article  PubMed  PubMed Central  Google Scholar 

  39. Cherra SJ, Kulich SM, Uechi G et al (2010) Regulation of the autophagy protein LC3 by phosphorylation. J Cell Biol 190:533–539. https://doi.org/10.1083/jcb.201002108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hernandez D, Torres CA, Setlik W et al (2012) Regulation of presynaptic neurotransmission by macroautophagy. Neuron 74:277–284. https://doi.org/10.1016/j.neuron.2012.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ravikumar B, Vacher C, Berger Z et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595. https://doi.org/10.1038/ng1362

    Article  CAS  PubMed  Google Scholar 

  42. Daulatzai MA (2016) Dysfunctional sensory modalities, locus coeruleus, and basal forebrain: early determinants that promote neuropathogenesis of cognitive and memory decline and Alzheimer’s disease. Neurotoxicol Res 30:295–337. https://doi.org/10.1007/s12640-016-9643-3

    Article  Google Scholar 

  43. Luo Y, Zhou J, Li M et al (2015) Reversal of aging-related emotional memory deficits by norepinephrine via regulating the stability of surface AMPA receptors. Aging Cell 14:170–179. https://doi.org/10.1111/acel.12282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brunnström H, Friberg N, Lindberg E, Englund E (2011) Differential degeneration of the locus coeruleus in dementia subtypes. Clin Neuropathol 30:104–110. https://doi.org/10.5414/NPP30104

    Article  PubMed  Google Scholar 

  45. Grudzien A, Shaw P, Weintraub S et al (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer’s disease. Neurobiol Aging 28:327–335. https://doi.org/10.1016/j.neurobiolaging.2006.02.007

    Article  CAS  PubMed  Google Scholar 

  46. Weinshenker D (2008) Functional consequences of locus coeruleus degeneration in Alzheimers disease. Curr Alzheimer Res 5:342–345. https://doi.org/10.2174/156720508784533286

    Article  CAS  PubMed  Google Scholar 

  47. Bondareff W, Mountjoy CQ, Roth M (1982) Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology 32:164–164. https://doi.org/10.1212/WNL.32.2.164

    Article  CAS  PubMed  Google Scholar 

  48. Wang Y, Mandelkow E (2012) Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans 40:644–652. https://doi.org/10.1042/BST20120071

    Article  CAS  PubMed  Google Scholar 

  49. Che X, Tang B, Wang X et al (2013) The BAG2 protein stabilises PINK1 by decreasing its ubiquitination. Biochem Biophys Res Commun 441:488–492. https://doi.org/10.1016/j.bbrc.2013.10.086

    Article  CAS  PubMed  Google Scholar 

  50. Gamerdinger M, Kaya AM, Wolfrum U et al (2011) BAG3 mediates chaperone-based aggresome-targeting and selective autophagy of misfolded proteins. EMBO Rep 12:149–156. https://doi.org/10.1038/embor.2010.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sariyer IK, Merabova N, Patel PK et al (2012) Bag3-induced autophagy is associated with degradation of JCV oncoprotein, T-Ag. PLoS ONE 7:e45000. https://doi.org/10.1371/journal.pone.0045000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kang J, Kim JW, Heo H et al (2021) Identification of BAG2 and cathepsin D as plasma biomarkers for Parkinson’s disease. Clin Transl Sci 14:606–616. https://doi.org/10.1111/cts.12920

    Article  CAS  PubMed  Google Scholar 

  53. Liu H, Dai C, Fan Y et al (2017) From autophagy to mitophagy: the roles of P62 in neurodegenerative diseases. J Bioenerg Biomembr 49:413–422. https://doi.org/10.1007/s10863-017-9727-7

    Article  CAS  PubMed  Google Scholar 

  54. Sánchez-Martín P, Komatsu M (2018) p62/SQSTM1—steering the cell through health and disease. J Cell Sci. https://doi.org/10.1242/jcs.222836

    Article  PubMed  Google Scholar 

  55. Tanji K, Miki Y, Ozaki T et al (2014) Phosphorylation of serine 349 of p62 in Alzheimer’s disease brain. Acta Neuropathol Commun 2:50. https://doi.org/10.1186/2051-5960-2-50

    Article  PubMed  PubMed Central  Google Scholar 

  56. Jung H-J, Kim Y-J, Eggert S et al (2013) Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62. Exp Neurol 248:441–450. https://doi.org/10.1016/j.expneurol.2013.07.013

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Professor Alberto Ribeiro and Waldir Caldeira for their kind assistance in providing infrastructure and expertise to acquire confocal images. This study was supported by research grants from Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) (2011/06434-7; 2013/08028-1; 2018/07592-4). R.S.L. received fellowships from FAPESP (2016/04409-9 and 2017/24722-6).

Funding

Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) (2011/06434-7; 2013/08028-1; 2018/07592-4; 2016/04409-9 and 2017/24722-6).

Author information

Authors and Affiliations

Authors

Contributions

RSL performed the experiments; RSL, DCC and MFRF analysed data and wrote the manuscript; MFRF supervised the study.

Corresponding author

Correspondence to Merari F. R. Ferrari.

Ethics declarations

Conflict of interest

Authors declare that there are no conflicts of interest to be reported.

Ethical approval

All the procedures were performed in strict accordance with Institutional and International Guidelines for animal care and use [29], as well as respecting the Brazilian federal law 11794/08 for animal welfare and approved by the institutional ethics committee (CEUA 271/2016) of the Department of Genetics and Evolutionary Biology, Institute for Biosciences, University of Sao Paulo.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2022_7577_MOESM1_ESM.jpg

Supplementary Figure 1 (S1): Detailed protocol depicting the time course of culture, BAG-2 transfection, rotenone or chloroquine (CQ) exposure and analysis (JPG 643 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima, R.S., Carrettiero, D.C. & Ferrari, M.F.R. BAG2 prevents Tau hyperphosphorylation and increases p62/SQSTM1 in cell models of neurodegeneration. Mol Biol Rep 49, 7623–7635 (2022). https://doi.org/10.1007/s11033-022-07577-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07577-w

Keywords

Navigation