Skip to main content
Log in

Critical review on karyotype diversity in lentil based on classical and molecular cytogenetics

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lentil is an annual protein rich valuable edible crop with only one cultivated and six wild taxa. Keeping in mind its narrow gene pool, the genus deserves critical assessment of genomic diversity at the chromosomal level. Genetic diversity represents the heritable variation within and between populations of organisms. Over the decades classical and molecular cytogenetics have played an immense role in the field of crop improvement. Lentil, though grown in different countries, country-wise chromosomal information is inadequate. Critical evaluation of more than seven decades chromosomal information has revealed unique karyotype diversity within the landraces of different countries. Application of fluorescent banding and fluorescent in situ hybridization (FISH) has helped to segregate cultivars based on cultivar specific chromosomal markers and landmarks. Selection of cultivated and wild cultivars based on qualitative and diseases related morpho-traits and new information from this critical review especially on molecular cytogenetics may provide more options for crop improvement. More research in the field of molecular cytogenetics from country specific species and cultivars are needed to enrich the repository of gene pool. Alien gene introgression from extended gene pool through the advanced genomics and biotechnological tools could facilitate the path of sustainable improvement of this crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Contains references of published data.

References

  1. Barulina H (1930) Lentil of the U.S.S.R. and of other countries. Bull Appl Bot PI Breed 40: l-319

  2. Shaw and Bose RD (1929) Studies in Indian Pulses Mem. Dept. of Agriculture of India

  3. Cubero JI (1981) Origin, taxonomy and domestication. In: Webb C, Hawtin G (eds) Lentils, commonwealth agricultural Bureaux, Farnham, UK, pp 15–38

  4. Ladizinsky G, Sakar D (1982) Morphological and cytogenetical characterization of Vicia montbretii Fisch & Mey. Synonym, Lens montbretii (Fisch & Mey.) Davis & Plitman. Bot J Lin Soc 85:209–212

    Article  Google Scholar 

  5. Ladizinsky G (1986) A new lens species from the Middle East Notes from the Royal Botanic Garden Edinburgh 43:489–492

    Google Scholar 

  6. Ladizinsky G, Muehlbauer FJ (1993) Wild lentils. Crit Rev Plant Sci 12(3):169–184

    Article  Google Scholar 

  7. Czefranova Z (1971) Review of species in the genus Lens Mill. Novosti Systematischeski Vyssich Rastenii 8:184–191

    Google Scholar 

  8. Ladizinsky G (1997) A new species of Lens from south-east Turkey. Bot J Lin Soc 123:257–260

    Google Scholar 

  9. van Oss H, Aron Y, Ladizinsky G (1997) Chloroplast DNA variation and evolution in the genus Lens Mill. Theor Appl Genet 94:452–457

    Article  Google Scholar 

  10. Ferguson ME, Maxted N, Slageren MV, Robertson LD (2000) A re-assessment of the taxonomy of Lens Mill. (Leguminosae, Papilionoideae, Vicieae). Bot J Linn Soc 133:41–59

    Article  Google Scholar 

  11. Hancock JF (2004) Plant evolution and the origin of crop species. 2nd (ed) CABI, Wallingford, UK

  12. Kumar S, Choudhary AK, Rana KS, Sarker A, Singh M (2018) Bio-fortification potential of global wild annual lentil core collection. PLoS ONE 13(1):e0191122. https://doi.org/10.1371/journal.pone.0191122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. FAO stat (2021) Statistics Database of the Food and Agriculture Organization of the United Nations. http://www.fao.org/statistics/databases/en

  14. Erskine W, Choudhary MA (1986) Variation between and within lentil landraces from Yemen republic. Euphytica 35:695–700

    Article  Google Scholar 

  15. Erskine W, Adham Y, Holly L (1989) Geographic distribution of variation in quantitative characters in a world lentil collection. Euphytica 43:97–103

    Article  Google Scholar 

  16. Lazaro A, Ruiz M, DelaRosa L, Martin I (2001) Relationships between agro/ morphological characters and climatic parameters in Spanish landraces of lentil (Lensculinaris Medik.). Genet Resour Crop Evol 48:239–249

    Article  Google Scholar 

  17. Zaccardelli M, Lupo F, Piergiovanniet al AR (2012) Characterization of Italian lentil (Lensculinaris Medik.) germplasm by agronomic traits, biochemical and molecular markers. Genet Resour Crop Evol 59:727–738

    Article  CAS  Google Scholar 

  18. Cristóbal MD, Pando V, Herrero B (2014) Morphological characterization of lentil (Lens culinaris Medik.) land races from Castilla Y León, Spain. Pak J Bot 46:1373–1380

    Google Scholar 

  19. Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082

    Article  Google Scholar 

  20. Ladizinsky G (1979) The origin of lentil and its wild gene pool. Euphytica 28:179–187

    Article  Google Scholar 

  21. Galasso I (2003) Distribution of highly repeated DNA sequences in species of the genus Lens Miller. Genome 46:1118–1124

    Article  CAS  PubMed  Google Scholar 

  22. Fikiru E, Kassahun TK, Bekele E (2010) A comparative study of morphological and molecular diversity in Ethiopian lentil (Lens culinaris Medikus) landraces. Afr J Plant Sci 4(7):242–254

    CAS  Google Scholar 

  23. Singh M, Mukesh K, Rana RK, Bisht IS, Dutta M et al (2013) Broadening the genetic base of lentil cultivars through inter sub-specific and inter-specific crosses of Lens taxa. Plant Breed 132(6):667–675

    Article  CAS  Google Scholar 

  24. Singh M, Bisht IS, Kumar S, Dutta M, Bansal KC et al (2014) Global wild annual lens collection: a potential resource for lentil genetic base broadening and yield enhancement. PLoS ONE 9(9):e107781

    PubMed  Google Scholar 

  25. Kumar S, Rajendran K, Kumar J et al (2015) Current knowledge in lentil genomics and its application for crop improvement. Front Plant Sci 6:1–13

    Article  Google Scholar 

  26. Yildizdoğan Z, İkten C, Mutlu N, Toker C (2016) Genetic relationships among the genera Cicer L., Lathyrus L., Lens Mill., and Vicia L., together with similarity of Lens taxa based on morphological and AFLP markers. Turk J Bot 40:1507–1509

    Article  Google Scholar 

  27. Polanco C, Sa´enz de Miera LE, Gonza´lez AI, Garcı´a P, et al (2019) Construction of a high-density interspecific (Lens culinaris x L. odemensis) genetic map based on functional markers for mapping morphological and agronomical traits, and QTLs affecting resistance to Ascochyta in lentil. PLoS ONE 14(3):e0214409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang PA, C, Bernd Friebe B, Bikram GillB, and R. F. Park (2007) Cytogenetics in the age of molecular genetics. Austr J Agric Res 58:498–506

    Article  CAS  Google Scholar 

  29. Caspersson T, Farber S, Foley CE, Kudynowski J, Modes EJ et al (1968) Chemical differentiation along metaphase chromosomes. Exp Cell Res 49:219–222

    Article  CAS  PubMed  Google Scholar 

  30. Vosa CG, Marchi P (1972) Quinacrine fluorescence and Giemsa staining in plants. Nat New Biol 237:191–192

    Article  CAS  PubMed  Google Scholar 

  31. Vosa CG (1973) Heterochromatin recognition and analysis of chromosome variation in Scilla sibirica. Chromosoma 43:269–278

    Article  Google Scholar 

  32. Schweizer D (1973) Differential staining of plant chromosomes. Chromosoma 40:307–320

    Article  Google Scholar 

  33. Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58(4):307–324

    Article  CAS  PubMed  Google Scholar 

  34. Fukui K (1996) Plant chromosomes at mitosis. In: Fukui K, Nakayama S (eds) Plant chromosomes Laboratory methods. CRC Press, Boca Raton, Tokyo, pp 1–18

    Google Scholar 

  35. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Article  Google Scholar 

  36. Yamamoto M, Mukai Y (1989) Application of fluorescence in situ hybridization to molecular cytogenetics of wheat. Wheat Inf Serv 69:30–32

    Google Scholar 

  37. Bhattacharjee SK (1951) Cytogenetics of Lens esculenta Moench Microsperma. Sci Cult 16:426–427

    Google Scholar 

  38. Sindhu JS, Slinkard AE, Scoles GJ (1983) Studies on variation in Lens. 1 Karyotype, University of Saskatchewan, Saskatoon Crop Development Centre, Canada. Lentil Experimental News Service 10(1): 1–14

  39. Sindhu JS, Slinkard AE, Scoles G (1983) Karyotypic Analysis of Lens ervoides Brign. Crop Sci. https://doi.org/10.2135/cropsci1983.0011183X002300030021x

    Article  Google Scholar 

  40. Sharma AK, Muhkopadhyay S (1963) Karyotype constancy in different strains of Lens esculenta Moench as worked out through recent techniques. Indian Agric 7:103–111

    Google Scholar 

  41. Sinha SSN, Acharia SS (1972) Karyotype analysis in some varieties of Lens culinaris. Cytologia 37:673–683

    Article  Google Scholar 

  42. Naithani SP, Sarbhoy RK (1973) Cytological studies in Lens esculenta Moench. Cytologia 38:195–203

    Article  Google Scholar 

  43. Gupta PK, Singh J (1981) Standard karyotype in lentil (Lens culinaris Med.) var. PL-639. LENS 8:23

  44. Lavania UC, Lavania S (1983) Karyotype studies in Indian pulses. Genet Agrar 37:299–308

    Google Scholar 

  45. Mehra RC, Butler MG, Beckman T (1986) N banding and karyotype analysis of Lens culinaris. J Hered 77:473–474

    Article  Google Scholar 

  46. Nandanwar RS, Narkhede MM (1991) Intraspecific variation in karyotype of lentil. J Maharastra Agri Univ 16:24–27

    Google Scholar 

  47. Namazi LG, Zakaria RA, Babaeian N, Tabar KK (2007) Comparative study of chromosome morphology and C-banding pattern in several genotypes of Lens culinaris. Pak J Bio Sci 10(11):1811–1816

    Article  Google Scholar 

  48. Khandaker M, Imdadul Hoque M, Alam SS (2007) Fluorescent banding in three varieties of Lens culinaria Medik (Fabaceae). Cytologia 72(2):227–231

    Article  Google Scholar 

  49. Sadras VO, Rosewarne GM, Lake L (2021) Australian Lentil breeding between 1988 and 2019 yield gain under stress than under high-yield conditions. Front Plant Sci 12:1–10. https://doi.org/10.3389/fpls.2021.674327

    Article  Google Scholar 

  50. Ford R, Pang ECK, Taylor PWJ (1997) Diversity analysis and species identification in Lens using PCR generated markers. Euphytica 96:247–255

    Article  CAS  Google Scholar 

  51. Toklu F, Karako T, Hakl E et al (2008) Genetic variation among lentil (Lens culinaris Medik) landraces from Southeast Turkey. Plant Breed. https://doi.org/10.1111/j.1439-0523.2008.01548.x

    Article  Google Scholar 

  52. Jha TB, Halder M (2015) Searching chromosomal landmarks in Indian lentils through EMA based Giemsa staining method. Protoplasma 253:1223–1231

    Article  PubMed  Google Scholar 

  53. Ladizinsky G, Braun D, Goshen D, Muehlbauer FJ (1984) The biological species of the genus Lens. Bot Gaz 145:253–261

    Article  Google Scholar 

  54. Ladizinsky G, Weeden NF, Muehlbauer FJ (1990) Tertiary trisomics in lentil. Euphytica 51:179–184

    Article  Google Scholar 

  55. Ladizinsky G (1999) Identification of lentil’s wild genetic stock. Genet Res Crop Evol 46:115–118

    Article  Google Scholar 

  56. Jha TB, Mahanti A, Ghorai A (2016) Karyotype analysis of Indian lentils through EMA based Giemsa staining. Caryologia 68:280–288

    Article  Google Scholar 

  57. Jha TB, Saha PS, Adak M, Jha S, Roy P (2017) Chromosome morphometric analysis of Indian cultivars of Lens culinaris Medik. using EMA based Giemsa staining method. Caryologia 70(3):270–283

    Article  Google Scholar 

  58. Kurata N, Omura T (1978) Karyotype analysis in rice 1: a new method for identifying all chromosome pairs. Jpn J Genet 53(4):251–255

    Article  Google Scholar 

  59. Kondo T, Hizume M (1982) Banding for the chromosomes of Cryptomeria japonica D. Don J Jap Forest Soc 64:356–358

    Google Scholar 

  60. Hizume M (1989) Analysis of plant chromosomes using a fluorescent banding method. Plant Cell Technol 3:78–83

    Google Scholar 

  61. Moscone EA, Lambrou M, Ehrendorfer F (1996) Fluorescent chromosome banding in the cultivated species of Capsicum (Solanaceae). Plant Syst Evol 202:37–63

    Article  Google Scholar 

  62. Yamamoto M (2012) Recent progress on studies of chromosome observation in deciduous fruit trees. J Jpn Soc Horti Sci 81:305–313

    Article  Google Scholar 

  63. Yamamoto M, Terakami S, Takada N, Yamamoto T (2016) Physical mapping of black spot disease resistance/susceptibility-related genome regions in Japanese pear (Pyrus pyrifolia) by BAC-FISH. Breed Sci 66:444–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jha TB, Bhowmick B, Roy P (2021) Analysis of CMA-DAPI bands and preparation of fluorescent karyotypes in thirty Indian cultivars of Lens culinaris. Caryologia 74(2):65–77

    Google Scholar 

  65. Jha TB, Saha PS (2021) Evaluation of morphological traits, fluorescent banding and rDNA ITS sequences in cultivated and wild Indian Lentil. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-021-01234-0

    Article  Google Scholar 

  66. Yakovlev SS, Pustahija F, Vicic V, Robin O (2014) Molecular cytogenetics (FISH and fluorochrome banding), resolving species relationships and genome organization. In: Besse P (ed) Molecular plant taxonomy: methods and protocols, methods in molecular biology, vol 1115. Springer, New York, pp 309–323

    Chapter  Google Scholar 

  67. Heitz E (1933) Die Herkunft der Chromocentren. Planta 18:571–636

    Article  Google Scholar 

  68. Setiawan AB, Wibowo A, Teo CH, Kikuchi S, Koba (2019) Repetitive DNA sequences accelerate molecular cytogenetic research in plants with small chromosomes. Indones J Biotechnol 24(2):82–87

    Article  Google Scholar 

  69. Yamamoto M (2007) Application of fluorescent staining in chromosomes to genetic studies in Citrus. Jap J Plant Sci 1:12–19

    Google Scholar 

  70. Yamamoto M, Abkenar AA, Matsumoto R (2008) Kubo, Tominaga S. CMA staining analysis of chromosomes in several species of Aurantioideae. Genet Resour Crop Evol 55:1167–1173

    Google Scholar 

  71. Schwarzacher T (2016) Preparation and fluorescent analysis of plant metaphase chromosomes. In: Caillaud MC (ed) Plant cell division: methods and protocols, methods in molecular biology, vol 1370. Humana Press, New York, pp 87–103

    Chapter  Google Scholar 

  72. Jha TB (2019) Karyotype analysis from aerial roots of Piper nigrum based on Giemsa and fluorochrome banding. Cytologia 4:313–317

    Article  Google Scholar 

  73. Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci USA 78:6633–6637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23(4):1029–1041

    Article  Google Scholar 

  76. Mukai Y, Endo TR, Gill BS (1990) Physical mapping of the 5S rRNA multigene family in common wheat. J Hered 81:290–295

    Article  CAS  Google Scholar 

  77. Jiang J, Gill BS (1994) New 18S–26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploid wheats. Chromosoma 103:179–185

    Article  CAS  PubMed  Google Scholar 

  78. Zhang P, Friebe B, Lukaszewski AJ, Gill BS (2001) The centromere structure in Robertsonian wheat-rye translocation chromosomes indicates that centric breakage-fusion can occur at different positions within the primary constriction. Chromosoma 110:335–344

    Article  CAS  PubMed  Google Scholar 

  79. Zhang P, Li W, Fellers J, Friebe B, Gill BS (2004) BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma 112:288–299

    Article  CAS  PubMed  Google Scholar 

  80. Friebe B, Kynast RG, Zhang P, Qi L, Dhar M, Gill BS (2001) Chromosome healing by addition of telomeric repeats in wheat occurs during the first mitotic divisions of the sporophyte and is a gradual process. Chromosome Res 9:137–146

    Article  CAS  PubMed  Google Scholar 

  81. Frankel OH, Brown AHD, Burdon JJ (1995) The conservation of plant biodiversity. Cambridge University Press, Cambridge, pp 235–256

    Google Scholar 

  82. Qualset CO, Damania AB, Zanatta ACA, Brush SB (1997) Locally based crop plant conservation. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the insitu approach. Chapman and Hall, London, pp 160–175

    Google Scholar 

  83. Abbo S, Miller TE, Reader SM, Dunford RP, King IP (1994) Detection of ribosomal DNA in lentil and chickpea by fluorescent in situ hybridization. Genome 37:713–716

    Article  CAS  PubMed  Google Scholar 

  84. Galasso I, Schmidt T, Pignone D (2001) Identification of Lens culinaris ssp. culinaris chromosomes by physical mapping of repetitive DNA sequences. Chromosome Res 9(3):199–209

    Article  CAS  PubMed  Google Scholar 

  85. Patil BP, Vrinten PL, Scoles GJ, Slinkard AE (1995) Variation in the ribosomal RNA units of genera Lens and Cicer. Euphytica 83:33–42

    Article  CAS  Google Scholar 

  86. Balyan HS, Houben A, Ahne R (2002) Karyotype analysis and physical mapping of 18S–5.8 S-25S and 5S ribosomal RNA loci in species of genus Lens Miller (Fabaceae). Caryologia 55(2):121–128

    Article  Google Scholar 

  87. Havey MJ, Muehlbauer FJ (1989) Linkages between restrictions fragment length, isozyme and morphological markers in lentil. Theor Appl Genet 77:395–401

    Article  CAS  PubMed  Google Scholar 

  88. Fernández M, Ruiz ML, Linares C, Fominaya A, Vega P (2005) 5S rDNA genome regions of Lens species. Genome 48:937–942

    Article  PubMed  Google Scholar 

  89. Slinkard AE (1985) Cytology and cytogenetics of lentils. LENS 12:1–10

    Google Scholar 

  90. Tadmor Y, Zamir D, Ladizinsky G (1987) Genetic mapping of an ancient translocation in the genus Lens. Theor Appl Genet 73:883–892

    Article  CAS  PubMed  Google Scholar 

  91. Lombardi M, Materne M, Cogan NO, Rodda M, Daetwyler HD et al (2014) Assessment of genetic variation within a global collection of lentils (Lens culinaris Medik.) cultivars and landraces using SNP markers. BMC Genet 15(150):1–10

    Google Scholar 

  92. Khazaei H, Caron CT, Fedoruk M, Diapari M, Vandenberg A et al (2016) Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the world’s agro-ecological zones. Front Plant Sci 7:1093. https://doi.org/10.3389/fpls.2016.01093

    Article  PubMed  PubMed Central  Google Scholar 

  93. Chester M, Leitch AR, Soltis PS, Soltis DE (2010) Review of the application of modern cytogenetic methods (FISH/GISH) to the study of reticulation (polyploidy/hybridisation). Genes 1:166–192. https://doi.org/10.3390/genes1020166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Deakin JE, Sally Potter S, Rachel O’Neill R et al (2019) Review, Chromosomics: Bridging the Gap between Genomes and Chromosomes. Genes 10:627. https://doi.org/10.3390/genes10080627

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

TBJ acknowledges Dr. S. Dutta Principal, Dr. P. Roy Head Dept. of Botany, Maulana Azad College for providing basic facilities. Dr. M. Halder, Barasat Govt. College is acknowledged for technical supports.

Funding

The author declare that no funds or grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Sharing of contribution does not arise.

Corresponding author

Correspondence to Timir Baran Jha.

Ethics declarations

Competing interest

Single author, Competing Interests Not required.

Consent to participate

Not required.

Consent to publish

Not required.

Ethical approval

This article does not contain any studies with human participants performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, T.B. Critical review on karyotype diversity in lentil based on classical and molecular cytogenetics. Mol Biol Rep 49, 9699–9714 (2022). https://doi.org/10.1007/s11033-022-07441-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07441-x

Keywords

Navigation