Skip to main content
Log in

XPG in the Nucleotide Excision Repair and Beyond: a study on the different functional aspects of XPG and its associated diseases

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

A Correction to this article was published on 28 June 2022

This article has been updated

Abstract

Several proteins are involved in DNA repair mechanisms attempting to repair damages to the DNA continuously. One such protein is Xeroderma Pigmentosum Complementation Group G (XPG), a significant component in the Nucleotide Excision Repair (NER) pathway. XPG is accountable for making the 3’ incision in the NER, while XPF-ERCC4 joins ERCC1 to form the XPF-ERCC1 complex. This complex makes a 5’ incision to eliminate bulky DNA lesions. XPG is also known to function as a cofactor in the Base Excision Repair (BER) pathway by increasing hNth1 activity, apart from its crucial involvement in the NER. Reports suggest that XPG also plays a non-catalytic role in the Homologous Recombination Repair (HRR) pathway by forming higher-order complexes with BRCA1, BRCA2, Rad51, and PALB2, further influencing the activity of these molecules. Studies show that, apart from its vital role in repairing DNA damages, XPG is also responsible for R-loop formation, which facilitates exhibiting phenotypes of Werner Syndrome. Though XPG has a role in several DNA repair pathways and molecular mechanisms, it is primarily a NER protein. Unrepaired and prolonged DNA damage leads to genomic instability and facilitates neurological disorders, aging, pigmentation, and cancer susceptibility. This review explores the vital role of XPG in different DNA repair mechanisms which are continuously involved in repairing these damaged sites and its failure leading to XP-G, XP-G/CS complex phenotypes, and cancer progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material:

Not applicable.

Code Availability

Not applicable.

Change history

References

  1. Krokan HE, Bjørås M (2013) Base excision repair. Cold Spring Harb Perspect Biol 5(4):a012583. https://doi.org/10.1101/cshperspect.a012583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kumar N, Raja S, Van Houten B (2020) The involvement of nucleotide excision repair proteins in the removal of oxidative DNA damage. Nucleic Acids Res 48(20):11227–11243. https://doi.org/10.1093/nar/gkaa777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thacker J (2011) Homologous Recombination Repair, Encyclopedia of Cancer. Springer, pp 1725–1729. https://doi.org/10.1007/978-3-642-16483-5_2801

  4. Shiomi N, Kito S, Oyama M, Matsunaga T, Harada YN, Ikawa M, Okabe M, Shiomi T (2004) Identification of the XPG region that causes the onset of Cockayne syndrome by using Xpg mutant mice generated by the cDNA-mediated knock-in method. Mol Cell Biol 24(9):3712–3719. https://doi.org/10.1128/MCB.24.9.3712-3719.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Constantinou A, Gunz D, Evans E, Lalle P, Bates PA, Wood RD, Clarkson SG (1999) Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J Biol Chem 274(9):5637–5648. https://doi.org/10.1074/jbc.274.9.5637

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Kao HI, Bambara RA (2004) Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem 73:589–615. https://doi.org/10.1146/annurev.biochem.73.012803.092453

    Article  CAS  PubMed  Google Scholar 

  7. Schärer OD (2008) XPG: its products and biological roles. Adv Exp Med Biol 637:83–92. https://doi.org/10.1007/978-0-387-09599-8_9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Miętus M, Nowak E, Jaciuk M, Kustosz P, Studnicka J, Nowotny M (2014) Crystal structure of the catalytic core of Rad2: insights into the mechanism of substrate binding. Nucleic Acids Res 42(16):10762–10775. https://doi.org/10.1093/nar/gku729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wakasugi M, Reardon JT, Sancar A (1997) The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem 272(25):16030–16034. https://doi.org/10.1074/jbc.272.25.16030

    Article  CAS  PubMed  Google Scholar 

  10. Thorel F, Constantinou A, Dunand-Sauthier I, Nouspikel T, Lalle P, Raams A, Jaspers NG, Vermeulen W, Shivji MK, Wood RD, Clarkson SG (2004) Definition of a short region of XPG necessary for TFIIH interaction and stable recruitment to sites of UV damage. Mol Cell Biol 24(24):10670–10680. https://doi.org/10.1128/MCB.24.24.10670-10680.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dunand-Sauthier I, Hohl M, Thorel F, Jaquier-Gubler P, Clarkson SG, Schärer OD (2005) The spacer region of XPG mediates recruitment to nucleotide excision repair complexes and determines substrate specificity. J Biol Chem 280(8):7030–7037. https://doi.org/10.1074/jbc.M412228200

    Article  CAS  PubMed  Google Scholar 

  12. González-Corrochano R, Ruiz FM, Taylor NMI, Huecas S, Drakulic S, Spínola-Amilibia M, Fernández-Tornero C (2020) The crystal structure of human XPG, the xeroderma pigmentosum group G endonuclease, provides insight into nucleotide excision DNA repair. Nucleic Acids Res 48(17):9943–9958. https://doi.org/10.1093/nar/gkaa688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deitsch E, Hibbard EM, Petersen JL (2016) The UVS9 gene of Chlamydomonas encodes an XPG homolog with a new conserved domain. DNA Repair (Amst) 37:33–42. https://doi.org/10.1016/j.dnarep.2015.11.003

    Article  CAS  Google Scholar 

  14. Mocquet V, Lainé JP, Riedl T, Yajin Z, Lee MY, Egly JM (2007) Sequential recruitment of the repair factors during NER: the role of XPG in initiating the resynthesis step. EMBO J Jan 27(1):155–167. https://doi.org/10.1038/sj.emboj.7601948

    Article  CAS  Google Scholar 

  15. Iyer N, Reagan MS, Wu KJ, Canagarajah B, Friedberg EC (1996) Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein. Biochemistry 35(7):2157–2167. https://doi.org/10.1021/bi9524124

    Article  CAS  PubMed  Google Scholar 

  16. Tsutakawa SE, Sarker AH, Ng C, Arvai AS, Shin DS, Shih B, Jiang S, Thwin AC, Tsai MS, Willcox A, Her MZ, Trego KS, Raetz AG, Rosenberg D, Bacolla A, Hammel M, Griffith JD, Cooper PK, Tainer JA (2020) Human XPG nuclease structure, assembly, and activities with insights for neurodegeneration and cancer from pathogenic mutations. Proc Natl Acad Sci USA 117(25):14127–14138. https://doi.org/10.1073/pnas.1921311117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Evans E, Fellows J, Coffer A, Wood RD (1997) Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J 16(3):625–638. https://doi.org/10.1093/emboj/16.3.625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kraemer KH, Patronas NJ, Schiffmann R, Brooks BP, Tamura D, DiGiovanna JJ (2007) Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship. Neuroscience 145(4):1388–1396. https://doi.org/10.1016/j.neuroscience.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  19. Schärer OD (2013) Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol 5(10):a012609. https://doi.org/10.1101/cshperspect.a012609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van Zeeland AA, van Hoffen A, Mullenders LHF (2001) Nucleotide excision repair of UV-radiation induced photolesions in human cells, Sun Protection in Man, Elsevier, pp 377–391. https://doi.org/10.1016/S1568-461X(01)80054-5

  21. Sancar A, Lindsey-Boltz LA, Unsal-Kaçmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85. https://doi.org/10.1146/annurev.biochem.73.011303.073723

    Article  CAS  PubMed  Google Scholar 

  22. Zotter A, Luijsterburg MS, Warmerdam DO, Ibrahim S, Nigg A, van Cappellen WA, Hoeijmakers JH, van Driel R, Vermeulen W, Houtsmuller AB (2006) Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced dna damage depends on functional TFIIH. Mol Cell Biol 26(23):8868–8879. https://doi.org/10.1128/MCB.00695-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Matsunaga T, Park CH, Bessho T, Mu D, Sancar A (1996) Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease. J Biol Chem 271(19):11047–11050. https://doi.org/10.1074/jbc.271.19.11047

    Article  CAS  PubMed  Google Scholar 

  24. Sarker AH, Tsutakawa SE, Kostek S, Ng C, Shin DS, Peris M, Campeau E, Tainer JA, Nogales E, Cooper PK (2005) Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne Syndrome. Mol Cell 20(2):187–198. https://doi.org/10.1016/j.molcel.2005.09.022

    Article  CAS  PubMed  Google Scholar 

  25. Tornaletti S, Hanawalt PC (1999) Effect of DNA lesions on transcription elongation. Biochimie 81(1–2):139–146. https://doi.org/10.1016/s0300-9084(99)80046-7

    Article  CAS  PubMed  Google Scholar 

  26. Kumar N, Moreno NC, Feltes BC, Menck CF, Houten BV (2020) Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet Mol Biol 43(1):e20190104. https://doi.org/10.1590/1678-4685-GMB-2019-0104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klungland A, Höss M, Gunz D, Constantinou A, Clarkson SG, Doetsch PW, Bolton PH, Wood RD, Lindahl T (1999) Base excision repair of oxidative DNA damage activated by XPG protein. Mol Cell 3(1):33–42. https://doi.org/10.1016/s1097-2765(00)80172-0

    Article  CAS  PubMed  Google Scholar 

  28. Hohl M, Dunand-Sauthier I, Staresincic L, Jaquier-Gubler P, Thorel F, Modesti M, Clarkson SG, Schärer OD (2007) Domain swapping between FEN-1 and XPG defines regions in XPG that mediate nucleotide excision repair activity and substrate specificity. Nucleic Acids Res 35(9):3053–3063. https://doi.org/10.1093/nar/gkm092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Oyama M, Wakasugi M, Hama T, Hashidume H, Iwakami Y, Imai R, Hoshino S, Morioka H, Ishigaki Y, Nikaido O, Matsunaga T (2004) Human NTH1 physically interacts with p53 and proliferating cell nuclear antigen. Biochem Biophys Res Commun 321(1):183–191. https://doi.org/10.1016/j.bbrc.2004.06.136

    Article  CAS  PubMed  Google Scholar 

  30. Takaya H, Nakai H, Takamatsu S, Mandai M, Matsumura N (2020) Homologous recombination deficiency status-based classification of high-grade serous ovarian carcinoma. Sci Rep 10(1):2757. https://doi.org/10.1038/s41598-020-59671-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18(1):99–113. https://doi.org/10.1038/cr.2008.1

    Article  CAS  PubMed  Google Scholar 

  32. Trego KS, Groesser T, Davalos AR, Parplys AC, Zhao W, Nelson MR, Hlaing A, Shih B, Rydberg B, Pluth JM, Tsai MS, Hoeijmakers JHJ, Sung P, Wiese C, Campisi J, Cooper PK (2016) Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability. Mol Cell 61(4):535–546. https://doi.org/10.1016/j.molcel.2015.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Herrero AB, Martín-Castellanos C, Marco E, Gago F, Moreno S (2006) Cross-talk between nucleotide excision and homologous recombination DNA repair pathways in the mechanism of action of antitumor trabectedin. Cancer Res 66(16):8155–8162. https://doi.org/10.1158/0008-5472.CAN-06-0179

    Article  CAS  PubMed  Google Scholar 

  34. Allison DF, Wang GG (2019) R-loops: formation, function, and relevance to cell stress. Cell Stress 3(2):38–46. https://doi.org/10.15698/cst2019.02.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pan X, Jiang N, Chen X, Zhou X, Ding L, Duan F (2014) R-loop structure: the formation and the effects on genomic stability. Yi Chuan 36(12):1185–1194. https://doi.org/10.3724/SP.J.1005.2014.1185

    Article  CAS  PubMed  Google Scholar 

  36. Santos-Pereira JM, Aguilera A (2015) R loops: new modulators of genome dynamics and function. Nat Rev Genet 16(10):583–597. https://doi.org/10.1038/nrg3961

    Article  CAS  PubMed  Google Scholar 

  37. Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 56(6):777–785. https://doi.org/10.1016/j.molcel.2014.10.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Scalera C, Ticli G, Dutto I, Cazzalini O, Stivala LA, Prosperi E (2021) Transcriptional Stress Induces Chromatin Relocation of the Nucleotide Excision Repair Factor XPG. Int J Mol Sci 22(12):6589. https://doi.org/10.3390/ijms22126589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Newman A (1998) RNA splicing. Curr Biol 8(25):903–905. https://doi.org/10.1016/s0960-9822(98)00005-0

    Article  Google Scholar 

  40. Goulielmaki E, Tsekrekou M, Batsiotos N, Ascensão-Ferreira M, Ledaki E, Stratigi K, Chatzinikolaou G, Topalis P, Kosteas T, Altmüller J, Demmers JA, Barbosa-Morais NL, Garinis GA (2021) The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing. Nat Commun 12(1):3153. https://doi.org/10.1038/s41467-021-23505-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yasuhara T, Kato R, Hagiwara Y, Shiotani B, Yamauchi M, Nakada S, Shibata A, Miyagawa K (2018) Human Rad52 Promotes XPG-Mediated R-loop Processing to Initiate Transcription-Associated Homologous Recombination Repair. Cell 175(2):558–570. https://doi.org/10.1016/j.cell.2018.08.056

    Article  CAS  PubMed  Google Scholar 

  42. Marabitti V, Lillo G, Malacaria E, Palermo V, Sanchez M, Pichierri P, Franchitto A (2019) ATM pathway activation limits R-loop-associated genomic instability in Werner syndrome cells. Nucleic Acids Res 47(7):3485–3502. https://doi.org/10.1093/nar/gkz025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng Q, Chen J (2010) Mechanism of p53 stabilization by ATM after DNA damage. Cell Cycle 9(3):472–478. https://doi.org/10.4161/cc.9.3.10556

    Article  CAS  PubMed  Google Scholar 

  44. Wang XW, Zhan Q, Coursen JD, Khan MA, Kontny HU, Yu L, Hollander MC, O’Connor PM, Fornace AJ Jr, Harris CC (1999) GADD45 induction of a G2/M cell cycle checkpoint. Proc Natl Acad Sci U S A 96(7):3706–3711. https://doi.org/10.1073/pnas.96.7.3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vaiserman AM, Moskalev AA, Pasyukova EG (2015) Gadd45 Proteins in Aging and Longevity of Mammals and Drosophila. [Healthy Ageing and Longevity] Life Extension Volume 3, Chapter 2, pp 39–65. https://doi.org/10.1007/978-3-319-18326-8.

  46. Barreto G, Schäfer A, Marhold J, Stach D, Swaminathan SK, Handa V, Döderlein G, Maltry N, Wu W, Lyko F, Niehrs C (2007) Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445(7128):671–675. https://doi.org/10.1038/nature05515

    Article  CAS  PubMed  Google Scholar 

  47. Moskalev AA, Smit-McBride Z, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Tacutu R, Fraifeld VE (2012) Gadd45 proteins: relevance to aging, longevity and age-related pathologies. Ageing Res Rev 11(1):51–66. https://doi.org/10.1016/j.arr.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  48. Ozgenc A, Loeb LA (2006) Werner Syndrome, aging and cancer. Genome Dyn 1:206–217. https://doi.org/10.1159/000092509

    Article  CAS  PubMed  Google Scholar 

  49. Martin GM, Poot M, Haaf T (2020) Lessons for aging from Werner syndrome epigenetics. Aging 12(3):2022–2023. https://doi.org/10.18632/aging.102829

    Article  PubMed  PubMed Central  Google Scholar 

  50. Trego KS, Chernikova SB, Davalos AR, Perry JJ, Finger LD, Ng C, Tsai MS, Yannone SM, Tainer JA, Campisi J, Cooper PK (2011) The DNA repair endonuclease XPG interacts directly and functionally with the WRN helicase defective in Werner syndrome. Cell Cycle 10(12):1998–2007. https://doi.org/10.4161/cc.10.12.15878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lehmann AR, McGibbon D, Stefanini M (2011) Xeroderma pigmentosum. Orphanet J Rare Dis 6:70. https://doi.org/10.1186/1750-1172-6-70

    Article  PubMed  PubMed Central  Google Scholar 

  52. Keijzer W, Jaspers NG, Abrahams PJ, Taylor AM, Arlett CF, Zelle B, Takebe H, Kinmont PD, Bootsma D (1979) A seventh complementation group in excision-deficient xeroderma pigmentosum. Mutat Res 62(1):183–190. https://doi.org/10.1016/0027-5107(79)90231-8

    Article  CAS  PubMed  Google Scholar 

  53. Brooks PJ (2017) The cyclopurine deoxynucleosides: DNA repair, biological effects, mechanistic insights, and unanswered questions. Free Radic Biol Med 107:90–100. https://doi.org/10.1016/j.freeradbiomed.2016.12.028

    Article  CAS  PubMed  Google Scholar 

  54. Huang J, Liu X, Tang LL, Long JT, Zhu J, Hua RX, Li J (2017) XPG gene polymorphisms and cancer susceptibility: evidence from 47 studies. Oncotarget 8(23):37263–37277. https://doi.org/10.18632/oncotarget.16146

    Article  PubMed  PubMed Central  Google Scholar 

  55. Deng N, Liu JW, Sun LP, Xu Q, Duan ZP, Dong NN, Yuan Y (2014) Expression of XPG protein in the development, progression and prognosis of gastric cancer. PLoS ONE 9(9):e108704. https://doi.org/10.1371/journal.pone.0108704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yang B, Chen WH, Wen XF, Liu H, Liu F (2013) Role of DNA repair-related gene polymorphisms in susceptibility to risk of prostate cancer. Asian Pac J Cancer Prev 14(10):5839–5842. https://doi.org/10.7314/apjcp.2013.14.10.5839

    Article  PubMed  Google Scholar 

  57. Cheng L, Spitz MR, Hong WK, Wei Q (2000) Reduced expression levels of nucleotide excision repair genes in lung cancer: a case-control analysis. Carcinogenesis 21(8):1527–1530. https://doi.org/10.1093/carcin/21.8.1527

    Article  CAS  PubMed  Google Scholar 

  58. Latimer JJ, Johnson JM, Kelly CM, Miles TD, Beaudry-Rodgers KA, Lalanne NA, Vogel VG, Kanbour-Shakir A, Kelley JL, Johnson RR, Grant SG (2010) Nucleotide excision repair deficiency is intrinsic in sporadic stage I breast cancer. Proc Natl Acad Sci USA 107(50):21725–21730. https://doi.org/10.1073/pnas.0914772107

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kumar R, Höglund L, Zhao C, Försti A, Snellman E, Hemminki K (2003) Single nucleotide polymorphisms in the XPG gene: determination of role in DNA repair and breast cancer risk. Int J Cancer 103(5):671–675. https://doi.org/10.1002/ijc.10870

    Article  CAS  PubMed  Google Scholar 

  60. Su J, Zhu Y, Dai B, Yuan W, Song J (2019) XPG Asp1104His polymorphism increases colorectal cancer risk especially in Asians. Am J Transl Res 11(2):1020–1029

  61. Du H, Zhang X, Du M, Guo N, Chen Z, Shu Y, Zhang Z, Wang M, Zhu L (2014) Association study between XPG Asp1104His polymorphism and colorectal cancer risk in a Chinese population. Sci Rep 4:6700. https://doi.org/10.1038/srep06700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhao J, Chen S, Zhou H, Zhang T, Liu Y, He J, Zhu J, Ruan J (2018) XPG rs17655 G > C polymorphism associated with cancer risk: evidence from 60 studies. Aging (Albany NY) 10(5):1073–1088. https://doi.org/10.18632/aging.101448

  63. de Lima-Bessa KM, Armelini MG, Chiganças V, Jacysyn JF, Amarante-Mendes GP, Sarasin A, Menck CF (2008) CPDs and 6-4PPs play different roles in UV-induced cell death in normal and NER-deficient human cells. DNA Repair (Amst) 7(2):303–312. https://doi.org/10.1016/j.dnarep.2007.11.003

    Article  CAS  Google Scholar 

  64. Reardon JT, Sancar A (2003) Recognition and repair of the cyclobutane thymine dimer, a major cause of skin cancers, by the human excision nuclease. Genes Dev 17(20):2539–2551. https://doi.org/10.1101/gad.1131003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Snyder SH (2006) Retraction for Nouspikel, A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: Implications for a second XPG function. Proc Natl Acad Sci USA 103(51):19606. https://doi.org/10.1073/pnas.0609759103

  66. Wood RD, Mitchell M, Sgouros J, Lindahl T (2001) Human DNA repair genes. Science 291(5507):1284–1289. https://doi.org/10.1126/science.1056154

    Article  CAS  PubMed  Google Scholar 

  67. O’Donovan A, Davies AA, Moggs JG, West SC, Wood RD (1994) XPG endonuclease makes the 3’ incision in human DNA nucleotide excision repair. Nature 371(6496):432–435. https://doi.org/10.1038/371432a0

    Article  PubMed  Google Scholar 

  68. Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58(5):235–263. https://doi.org/10.1002/em.22087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. van Hoffen A, Balajee AS, van Zeeland AA, Mullenders LH (2003) Nucleotide excision repair and its interplay with transcription. Toxicology 193(1–2):79–90. https://doi.org/10.1016/j.tox.2003.06.001

    Article  CAS  PubMed  Google Scholar 

  70. Mohrenweiser HW, Jones IM (1998) Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation? Mutat Res 400(1–2):15–24. https://doi.org/10.1016/s0027-5107(98)00059-1

    Article  CAS  PubMed  Google Scholar 

  71. Cheng L, Sturgis EM, Eicher SA, Spitz MR, Wei Q (2002) Expression of nucleotide excision repair genes and the risk for squamous cell carcinoma of the head and neck. Cancer 94(2):393–397. https://doi.org/10.1002/cncr.10231

    Article  CAS  PubMed  Google Scholar 

  72. Walsh CS, Ogawa S, Karahashi H, Scoles DR, Pavelka JC, Tran H, Miller CW, Kawamata N, Ginther C, Dering J, Sanada M, Nannya Y, Slamon DJ, Koeffler HP, Karlan BY (2008) ERCC5 is a novel biomarker of ovarian cancer prognosis. J Clin Oncol 26(18):2952–2958. https://doi.org/10.1200/JCO.2007.13.5806

    Article  CAS  PubMed  Google Scholar 

  73. Sabatino MA, Marabese M, Ganzinelli M, Caiola E, Geroni C, Broggini M (2010) Down-regulation of the nucleotide excision repair gene XPG as a new mechanism of drug resistance in human and murine cancer cells. Mol Cancer 9:259. https://doi.org/10.1186/1476-4598-9-259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Govt. of India (Sanction Order No. “ECR/2016/000965”).

Author information

Authors and Affiliations

Authors

Contributions

Riasha Pal: Investigation, Data curation, Writing - original draft; Nilanjan Paul: Investigation, Data curation, Writing - original draft; Deep Bhattacharya: Investigation, Data curation, Writing - original draft; Sudeshna Rakshit: Writing - review & editing; Geetha Shanmugam: Writing - review & editing; Koustav Sarkar: Conceptualization, Writing - review & editing, Project administration, Supervision, Funding acquisition.

Corresponding author

Correspondence to Koustav Sarkar.

Ethics declarations

Consent for publication:

Not applicable.

Conflicts of interest/Competing interests:

None.

Ethics approval:

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to figures and captions are mismatching.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, R., Paul, N., Bhattacharya, D. et al. XPG in the Nucleotide Excision Repair and Beyond: a study on the different functional aspects of XPG and its associated diseases. Mol Biol Rep 49, 7995–8006 (2022). https://doi.org/10.1007/s11033-022-07324-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07324-1

Keywords