Abstract
Multiple sclerosis (MS) is a chronic and complex neurodegenerative disease, distinguished by the presence of lesions in the central nervous system (CNS) due to exacerbated immunological responses that inflict oligodendrocytes and the myelin sheath of axons. In recent years, studies have focused on targeted therapeutics for MS that emphasize the role of G protein-coupled receptors (GPCRs), specifically cannabinoids receptors. Clinical studies have suggested the therapeutic potential of cannabinoids derived from Cannabis sativa in relieving pain, tremors and spasticity. Cannabinoids also appear to prevent exaggerated immune responses in CNS due to compromised blood–brain barrier. Both, endocannabinoid system (ECS) modulators and cannabinoid ligands actively promote oligodendrocyte survival by regulating signaling, migration and myelination of nerve cells. The cannabinoid receptors 1 (CB1) and 2 (CB2) of ECS are the main ones in focus for therapeutic intervention of MS. Various CB1/CB2 receptors agonists have been experimentally studied which showed anti-inflammatory properties and are considered to be effective as potential therapeutics for MS. In this review, we focused on the exacerbated immune attack on nerve cells and the role of the cannabinoids and its interaction with the ECS in CNS during MS pathology.



Similar content being viewed by others
References
Banks WA (2015) The blood-brain barrier in neuroimmunology: tales of separation and assimilation. Brain Behav Immun 44:1–8. https://doi.org/10.1016/j.bbi.2014.08.007
Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, Thompson AJ (2014) Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 83(11):1022–1024. https://doi.org/10.1212/WNL.0000000000000768
Chiurchiù V, van der Stelt M, Centonze D, Maccarrone M (2018) The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: clues for other neuroinflammatory diseases. Prog Neurobiol 160:82–100. https://doi.org/10.1016/j.pneurobio.2017.10.007
Tullman MJ (2013) Overview of the epidemiology, diagnosis, and disease progression associated with multiple sclerosis. Am J Manage Care 19(2 Suppl):S15-20
Kamińska J, Koper OM, Piechal K, Kemona H (2017) Multiple sclerosis—etiology and diagnostic potential. Postepy Hig Med Dosw (Online) 71:551–563. https://doi.org/10.5604/01.3001.0010.3836
Zéphir H (2018) Progress in understanding the pathophysiology of multiple sclerosis. Revue Neurologique 174(6):358–363. https://doi.org/10.1016/j.neurol.2018.03.006
Weiner HL (2008) A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J Neurol 255(Suppl 1):3–11. https://doi.org/10.1007/s00415-008-1002-8
International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2, Sawcer S, Hellenthal G, Pirinen M et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359):214–219. https://doi.org/10.1038/nature10251
Du C, Xie X (2012) G protein-coupled receptors as therapeutic targets for multiple sclerosis. Cell Res 22(7):1108–1128. https://doi.org/10.1038/cr.2012.87
Calabrese M, Filippi M, Gallo P (2010) Cortical lesions in multiple sclerosis. Nat Rev Neurol 6(8):438–444. https://doi.org/10.1038/nrneurol.2010.93
Lassmann H (2018) Multiple sclerosis pathology. Cold Spring Harb Perspect Med 8(3):a028936. https://doi.org/10.1101/cshperspect.a028936
Lassmann H (2008) Models of multiple sclerosis: new insights into pathophysiology and repair. Curr Opin Neurol 21(3):242–247. https://doi.org/10.1097/WCO.0b013e3282fee94a
Hemmer B, Kerschensteiner M, Korn T (2015) Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 14(4):406–419. https://doi.org/10.1016/S1474-4422(14)70305-9
Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101. https://doi.org/10.1016/S0065-2776(07)96002-2
Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28(4):454–467. https://doi.org/10.1016/j.immuni.2008.03.004
Junttila IS (2018) Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. Front Immunol 9:888. https://doi.org/10.3389/fimmu.2018.00888
Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H, Kim HJ, Bar-Or A (2007) Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol 178(10):6092–6099. https://doi.org/10.4049/jimmunol.178.10.6092
Kouchaki E, Salehi M, Reza Sharif M, Nikoueinejad H, Akbari H (2014) Numerical status of CD4(+)CD25(+)FoxP3(+) and CD8(+)CD28(-) regulatory T cells in multiple sclerosis. Iran J Basic Med Sci 17(4):250–255
Volpe E, Sambucci M, Battistini L, Borsellino G (2016) Fas-fas ligand: checkpoint of T cell functions in multiple sclerosis. Front Immunol 7:382. https://doi.org/10.3389/fimmu.2016.00382
Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12. https://doi.org/10.1016/j.bbi.2016.03.010
Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G, Chavakis T (2015) Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther 147:123–135. https://doi.org/10.1016/j.pharmthera.2014.11.008
Mirshafiey A, Asghari B, Ghalamfarsa G, Jadidi-Niaragh F, Azizi G (2014) The significance of matrix metalloproteinases in the immunopathogenesis and treatment of multiple sclerosis. Sultan Qaboos Univ Med J 14(1):e13-25. https://doi.org/10.12816/0003332
Gerwien H, Hermann S, Zhang X, Korpos E, Song J, Kopka K, Faust A, Wenning C, Gross CC, Honold L, Melzer N, Opdenakker G, Wiendl H, Schäfers M, Sorokin L (2016) Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood-brain barrier. Sci Transl Med 8(364):364ra152. https://doi.org/10.1126/scitranslmed.aaf8020
Pérez-Cerdá F, Sánchez-Gómez MV, Matute C (2016) The link of inflammation and neurodegeneration in progressive multiple sclerosis. Mult Scler Demyelinating Disord 1:9. https://doi.org/10.1186/s40893-016-0012-0
Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V, Macias-Islas MA, Torres-Sánchez ED (2013) Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol 2013:708659. https://doi.org/10.1155/2013/708659
Tobore TO (2021) Oxidative/nitroxidative stress and multiple sclerosis. J Mol Neurosci 71(3):506–514. https://doi.org/10.1007/s12031-020-01672-y
Agah E, Zardoui A, Saghazadeh A, Ahmadi M, Tafakhori A, Rezaei N (2018) Osteopontin (OPN) as a CSF and blood biomarker for multiple sclerosis: a systematic review and meta-analysis. PLoS ONE 13(1):e0190252. https://doi.org/10.1371/journal.pone.0190252
Levite M (2017) Glutamate, T cells and multiple sclerosis. J Neural Transm (Vienna) 124(7):775–798. https://doi.org/10.1007/s00702-016-1661-z
Brunt TM, Bossong MG (2020) The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur J Neurosci. https://doi.org/10.1111/ejn.14982
Gülck T, Møller BL (2020) Phytocannabinoids: origins and biosynthesis. Trends Plant Sci 25(10):985–1004. https://doi.org/10.1016/j.tplants.2020.05.005
Aizpurua-Olaizola O, Soydaner U, Öztürk E, Schibano D, Simsir Y, Navarro P, Etxebarria N, Usobiaga A (2016) Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. J Nat Prod 79(2):324–331. https://doi.org/10.1021/acs.jnatprod.5b00949
Patil KR, Goyal SN, Sharma C, Patil CR, Ojha S (2015) Phytocannabinoids for cancer therapeutics: recent updates and future prospects. Curr Med Chem 22(30):3472–3501. https://doi.org/10.2174/0929867322666150716115057
Rog DJ, Nurmikko TJ, Friede T, Young CA (2005) Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 65:812–819
Casey SL, Atwal N, Vaughan CW (2017) Cannabis constituent synergy in a mouse neuropathic pain model. Pain 158(12):2452–2460. https://doi.org/10.1097/j.pain.0000000000001051
Alkislar I, Miller AR, Hohmann AG, Sadaka AH, Cai X, Kulkarni P, Ferris CF (2021) Inhaled cannabis suppresses chemotherapy-induced neuropathic nociception by decoupling the raphe nucleus: a functional imaging study in rats. Biol Psychiatry Cogn Neurosci Neuroimaging 6(4):479–489. https://doi.org/10.1016/j.bpsc.2020.11.015
Mitchell VA, Harley J, Casey SL, Vaughan AC, Winters B, Vaughan CW (2021) Oral efficacy of Δ(9)-tetrahydrocannabinol and cannabidiol in a mouse neuropathic pain model. Neuropharmacology 189:108529. https://doi.org/10.1016/j.neuropharm.2021.108529
Morales P, Hurst DP, Reggio PH (2017) Molecular targets of the phytocannabinoids: a complex picture. Prog Chem Org Nat Prod 103:103–131. https://doi.org/10.1007/978-3-319-45541-9_4
Turner SE, Williams CM, Iversen L, Whalley BJ (2017) Molecular pharmacology of phytocannabinoids. Prog Chem Org Nat Prod 103:61–101. https://doi.org/10.1007/978-3-319-45541-9_3
Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL (2014) Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity? Life Sci 97(1):45–54. https://doi.org/10.1016/j.lfs.2013.09.017
Irving A, Abdulrazzaq G, Chan SLF, Penman J, Harvey J, Alexander SPH (2017) Cannabinoid receptor-related orphan G protein-coupled receptors. Adv Pharmacol 80:223–247. https://doi.org/10.1016/bs.apha.2017.04.004
Chiba T, Ueno S, Obara Y, Nakahata N (2011) A synthetic cannabinoid, CP55940, inhibits lipopolysaccharide-induced cytokine mRNA expression in a cannabinoid receptor-independent mechanism in rat cerebellar granule cells. J Pharm Pharmacol 63(5):636–647. https://doi.org/10.1111/j.2042-7158.2011.01250.x
Tomiyama KI, Funada M (2021) Synthetic cannabinoid CP-55,940 induces apoptosis in a human skeletal muscle model via regulation of CB1 receptors and L-type Ca2+ channels. Arch Toxicol 95(2):617–630. https://doi.org/10.1007/s00204-020-02944-7
Alsalem M, Altarifi A, Haddad M, Aldossary SA, Kalbouneh H, Aldaoud N, Saleh T, El-Salem K (2019) Antinociceptive and abuse potential effects of cannabinoid/opioid combinations in a chronic pain model in rats. Brain Sci 9(11):328. https://doi.org/10.3390/brainsci9110328
Maguire DR, France CP (2016) Additive antinociceptive effects of mixtures of the κ-opioid receptor agonist spiradoline and the cannabinoid receptor agonist CP55940 in rats. Behav Pharmacol 27(1):69–72. https://doi.org/10.1097/FBP.0000000000000184
Minervini V, France CP (2018) Effects of morphine/CP55940 mixtures on an impulsive choice task in rhesus monkeys. Behav Pharmacol 29(1):60–70. https://doi.org/10.1097/FBP.0000000000000339
Frontera JL, Gonzalez Pini VM, Messore FL, Brusco A (2018) Exposure to cannabinoid agonist WIN 55,212–2 during early adolescence increases alcohol preference and anxiety in CD1 mice. Neuropharmacology 137:268–274. https://doi.org/10.1016/j.neuropharm.2018.05.018
Aguilar MA, Ledesma JC, Rodríguez-Arias M, Penalva C, Manzanedo C, Miñarro J, Arenas MC (2017) Adolescent exposure to the synthetic cannabinoid WIN 55212–2 modifies cocaine withdrawal symptoms in adult mice. Int J Mol Sci 18(6):1326. https://doi.org/10.3390/ijms18061326
Alarcon TA, Areal LB, Herlinger AL, Paiva KK, Cicilini MA, Martins-Silva C, Pires RGW (2020) The cannabinoid agonist WIN-2 affects acquisition but not consolidation of a spatial information in training and retraining processes: Relation with transcriptional regulation of the endocannabinoid system? Behav Brain Res 377:112231. https://doi.org/10.1016/j.bbr.2019.112231
Shahbazi F, Grandi V, Banerjee A, Trant JF (2020) Cannabinoids and cannabinoid receptors: the story so far. iScience 23(7):101301. https://doi.org/10.1016/j.isci.2020.101301
Tsuboi K, Uyama T, Okamoto Y, Ueda N (2018) Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm Regen 38:28. https://doi.org/10.1186/s41232-018-0086-5
Cristino L, Bisogno T, Di Marzo V (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 16(1):9–29. https://doi.org/10.1038/s41582-019-0284-z
Placzek EA, Okamoto Y, Ueda N, Barker EL (2008) Membrane microdomains and metabolic pathways that define anandamide and 2-arachidonyl glycerol biosynthesis and breakdown. Neuropharmacology 55(7):1095–1104. https://doi.org/10.1016/j.neuropharm.2008.07.047
Jain T, Wager-Miller J, Mackie K, Straiker A (2013) Diacylglycerol lipaseα (DAGLα) and DAGLβ cooperatively regulate the production of 2-arachidonoyl glycerol in autaptic hippocampal neurons. Mol Pharmacol 84(2):296–302. https://doi.org/10.1124/mol.113.085217
Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564. https://doi.org/10.1038/346561a0
Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65. https://doi.org/10.1038/365061a0
Miller LK, Devi LA (2011) The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol Rev 63(3):461–470. https://doi.org/10.1124/pr.110.003491
Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 168:299–325. https://doi.org/10.1007/3-540-26573-2_10
Nyíri G, Cserép C, Szabadits E, Mackie K, Freund TF (2005) CB1 cannabinoid receptors are enriched in the perisynaptic annulus and on preterminal segments of hippocampal GABAergic axons. Neuroscience 136(3):811–822. https://doi.org/10.1016/j.neuroscience.2005.01.026
Katona I, Urbán GM, Wallace M, Ledent C, Jung KM, Piomelli D, Mackie K, Freund TF (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26(21):5628–5637. https://doi.org/10.1523/JNEUROSCI.0309-06.2006
Fede C, Albertin G, Petrelli L, Sfriso MM, Biz C, De Caro R, Stecco C (2016) Expression of the endocannabinoid receptors in human fascial tissue. Eur J Histochem 60(2):2643. https://doi.org/10.4081/ejh.2016.2643
Puhl SL (2020) Cannabinoid-sensitive receptors in cardiac physiology and ischaemia. Biochim Biophys Acta Mol Cell Res 1867(3):118462. https://doi.org/10.1016/j.bbamcr.2019.03.009
Zou S, Kumar U (2018) Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci 19(3):833. https://doi.org/10.3390/ijms19030833
Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y (2012) Endocannabinoid signaling and synaptic function. Neuron 76(1):70–81. https://doi.org/10.1016/j.neuron.2012.09.020
Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153(2):240–251. https://doi.org/10.1038/sj.bjp.0707584
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J (2020) Endocannabinoid system components as potential biomarkers in psychiatry. Front Psychiatry 11:315. https://doi.org/10.3389/fpsyt.2020.00315
Gómez Del Pulgar T, De Ceballos ML, Guzmán M, Velasco G (2002) Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 277(39):36527–36533. https://doi.org/10.1074/jbc.M205797200
Weber MS, Hemmer B (2010) Cooperation of B cells and T cells in the pathogenesis of multiple sclerosis. Results Probl Cell Differ 51:115–126. https://doi.org/10.1007/400_2009_21
Ghigo A, Damilano F, Braccini L, Hirsch E (2010) PI3K inhibition in inflammation: toward tailored therapies for specific diseases. BioEssays 32(3):185–196. https://doi.org/10.1002/bies.200900150
Mestre L, Docagne F, Correa F, Loría F, Hernangómez M, Borrell J, Guaza C (2009) A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol Cell Neurosci 40(2):258–266. https://doi.org/10.1016/j.mcn.2008.10.015
Amenta PS, Jallo JI, Tuma RF, Hooper DC, Elliott MB (2014) Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J Neuroinflamm 11:191. https://doi.org/10.1186/s12974-014-0191-6
Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, Hoertnagl H, Raine CS, Schneider-Stock R, Nitsch R, Ullrich O (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49(1):67–79. https://doi.org/10.1016/j.neuron.2005.11.027
Palazuelos J, Davoust N, Julien B, Hatterer E, Aguado T, Mechoulam R, Benito C, Romero J, Silva A, Guzmán M, Nataf S, Galve-Roperh I (2008) The CB(2) cannabinoid receptor controls myeloid progenitor trafficking: involvement in the pathogenesis of an animal model of multiple sclerosis. J Biol Chem 283(19):13320–13329. https://doi.org/10.1074/jbc.M707960200
van Niekerk G, Mabin T, Engelbrecht AM (2019) Anti-inflammatory mechanisms of cannabinoids: an immunometabolic perspective. Inflammopharmacology 27(1):39–46. https://doi.org/10.1007/s10787-018-00560-7
Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M (2009) Cannabinoids as novel anti-inflammatory drugs. Future Med Chem 1(7):1333–1349. https://doi.org/10.4155/fmc.09.93
Correa F, Mestre L, Docagne F, Guaza C (2005) Activation of cannabinoid CB2 receptor negatively regulates IL-12p40 production in murine macrophages: role of IL-10 and ERK1/2 kinase signaling. Br J Pharmacol 145(4):441–448. https://doi.org/10.1038/sj.bjp.0706215
Correa F, Docagne F, Mestre L, Clemente D, Hernangómez M, Loría F, Guaza C (2009) A role for CB2 receptors in anandamide signalling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. Biochem Pharmacol 77(1):86–100. https://doi.org/10.1016/j.bcp.2008.09.014
Berkovich R (2013) Treatment of acute relapses in multiple sclerosis. Neurotherapeutics 10(1):97–105. https://doi.org/10.1007/s13311-012-0160-7
Berkovich R, Agius MA (2014) Mechanisms of action of ACTH in the management of relapsing forms of multiple sclerosis. Ther Adv Neurol Disord 7(2):83–96. https://doi.org/10.1177/1756285613518599
Kutz CF, Dix AL (2018) Repository corticotropin injection in multiple sclerosis: an update. Neurodegener Dis Manage 8(4):217–225. https://doi.org/10.2217/nmt-2018-0008
Yang Y, Harmon CM (2020) Molecular determinants of ACTH receptor for ligand selectivity. Mol Cell Endocrinol 503:110688. https://doi.org/10.1016/j.mce.2019.110688
Ferraro D, Mirante VG, Losi L, Villa E, Simone AM, Vitetta F, Federzoni L, Nichelli PF, Sola P (2015) Methylprednisolone-induced toxic hepatitis after intravenous pulsed therapy for multiple sclerosis relapses. Neurologist 19(6):153–154. https://doi.org/10.1097/NRL.0000000000000029
Vasheghani-Farahani A, Sahraian MA, Darabi L, Aghsaie A, Minagar A (2011) Incidence of various cardiac arrhythmias and conduction disturbances due to high dose intravenous methylprednisolone in patients with multiple sclerosis. J Neurol Sci 309(1–2):75–78. https://doi.org/10.1016/j.jns.2011.07.018
Winkelmann A, Loebermann M, Reisinger EC, Hartung HP, Zettl UK (2016) Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 12(4):217–233. https://doi.org/10.1038/nrneurol.2016.21
Gómez-Figueroa E, Gutierrez-Lanz E, Alvarado-Bolaños A, Casallas-Vanegas A, Garcia-Estrada C, Zabala-Angeles I, Cadena-Fernandez A, Veronica RA, Irene TF, Flores-Rivera J (2021) Cyclophosphamide treatment in active multiple sclerosis. Neurol Sci 42(9):3775–3780. https://doi.org/10.1007/s10072-021-05052-1
Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, Wolinsky JS, Bagulho T, Delhay JL, Dukovic D, Truffinet P, Kappos L, TOWER Trial Group (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 13(3):247–256. https://doi.org/10.1016/S1474-4422(13)70308-9
Hainke U, Thomas K, Ziemssen T (2016) Laquinimod in the treatment of relapsing remitting multiple sclerosis. Expert Opin Drug Metab Toxicol 12(6):701–709. https://doi.org/10.1080/17425255.2016.1179279
Fernández Bargiela N, Mondelo García C, Giménez Arufe V, Vizoso Hermida JR, Martín Herranz I (2020) Fingolimod in multiple sclerosis: profile of use in habitual practice. Eur J Hosp Pharm 27(6):346–349. https://doi.org/10.1136/ejhpharm-2018-001840
Ganji A, Monfared ME, Shapoori S, Nourbakhsh P, Ghazavi A, Ghasami K, Mosayebi G (2020) Effects of interferon and glatiramer acetate on cytokine patterns in multiple sclerosis patients. Cytokine 126:154911. https://doi.org/10.1016/j.cyto.2019.154911
Giedraitiene N, Kaubrys G, Kizlaitiene R, Bagdonaite L, Griskevicius L, Valceckiene V, Stoskus M (2015) Therapeutic plasma exchange in multiple sclerosis patients with abolished interferon-beta bioavailability. Med Sci Monit 21:1512–1519. https://doi.org/10.12659/MSM.894119
Lehmann HC, Hartung HP, Hetzel GR, Stüve O, Kieseier BC (2006) Plasma exchange in neuroimmunological disorders: Part 1: rationale and treatment of inflammatory central nervous system disorders. Arch Neurol 63(7):930–935. https://doi.org/10.1001/archneur.63.7.930
Corey-Bloom J, Wolfson T, Gamst A, Jin S, Marcotte TD, Bentley H, Gouaux B (2012) Smoked cannabis for spasticity in multiple sclerosis: a randomized, placebo-controlled trial. CMAJ 184(10):1143–1150. https://doi.org/10.1503/cmaj.110837
Schimrigk S, Marziniak M, Neubauer C, Kugler EM, Werner G, Abramov-Sommariva D (2017) Dronabinol is a safe long-term treatment option for neuropathic pain patients. Eur Neurol 78(5–6):320–329. https://doi.org/10.1159/000481089
Fraguas-Sánchez AI, Torres-Suárez AI (2018) Medical use of cannabinoids. Drugs 78(16):1665–1703. https://doi.org/10.1007/s40265-018-0996-1
Diana G, Malloni M, Pieri M (2003) Effects of the synthetic cannabinoid nabilone on spatial learning and hippocampal neurotransmission. Pharmacol Biochem Behav 75(3):585–591. https://doi.org/10.1016/s0091-3057(03)00127-8
Tsang CC, Giudice MG (2016) Nabilone for the Management of Pain. Pharmacotherapy 36(3):273–286. https://doi.org/10.1002/phar.1709
Kim J, Grobelna A (2017) Nabilone for chronic pain management: A review of clinical effectiveness and guidelines. CADTH
Russo E, Guy GW (2006) A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 66(2):234–246. https://doi.org/10.1016/j.mehy.2005.08.026
Podda G, Constantinescu CS (2012) Nabiximols in the treatment of spasticity, pain and urinary symptoms due to multiple sclerosis. Expert Opin Biol Ther 12(11):1517–1531. https://doi.org/10.1517/14712598.2012.721765
Alessandria G, Meli R, Infante MT, Vestito L, Capello E, Bandini F (2020) Long-term assessment of the cognitive effects of nabiximols in patients with multiple sclerosis: a pilot study. Clin Neurol Neurosurg 196:105990. https://doi.org/10.1016/j.clineuro.2020.105990
Novotna A, Mares J, Ratcliffe S, Novakova I, Vachova M, Zapletalova O, Gasperini C, Pozzilli C, Cefaro L, Comi G, Rossi P, Ambler Z, Stelmasiak Z, Erdmann A, Montalban X, Klimek A, Davies P, Sativex Spasticity Study Group (2011) A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols* (Sativex(®)), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur J Neurol 18(9):1122–1131. https://doi.org/10.1111/j.1468-1331.2010.03328.x
Markovà J, Essner U, Akmaz B, Marinelli M, Trompke C, Lentschat A, Vila C (2019) Sativex® as add-on therapy vs. further optimized first-line ANTispastics (SAVANT) in resistant multiple sclerosis spasticity: a double-blind, placebo-controlled randomised clinical trial. Int J Neurosci 129(2):119–128. https://doi.org/10.1080/00207454.2018.1481066
Berrendero F, Sánchez A, Cabranes A, Puerta C, Ramos JA, García-Merino A, Fernández-Ruiz J (2001) Changes in cannabinoid CB(1) receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse 41(3):195–202. https://doi.org/10.1002/syn.1075
Pryce G, Ahmed Z, Hankey DJ, Jackson SJ, Croxford JL, Pocock JM, Ledent C, Petzold A, Thompson AJ, Giovannoni G, Cuzner ML, Baker D (2003) Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 126(Pt 10):2191–2202. https://doi.org/10.1093/brain/awg224
Milano W, Capasso A (2019) Cannabinoids involvement in neurodegenerative diseases. Res J Pharmacol 13(2):16–26. https://doi.org/10.36478/rjpharm.2019.16.26
Arévalo-Martín A, Vela JM, Molina-Holgado E, Borrell J, Guaza C (2003) Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci 23(7):2511–2516. https://doi.org/10.1523/JNEUROSCI.23-07-02511.2003
Tomas-Roig J, Havemann-Reinecke U (2019) Gene expression signature in brain regions exposed to long-term psychosocial stress following acute challenge with cannabinoid drugs. Psychoneuroendocrinology 102:1–8. https://doi.org/10.1016/j.psyneuen.2018.11.023
Tomas-Roig J, Agbemenyah HY, Celarain N, Quintana E, Ramió-Torrentà L, Havemann-Reinecke U (2020) Dose-dependent effect of cannabinoid WIN-55,212–2 on myelin repair following a demyelinating insult. Sci Rep 10(1):590. https://doi.org/10.1038/s41598-019-57290-1
Zagaja M, Haratym-Maj A, Szewczyk A, Rola R, Maj M, Łuszczki JJ, Andres-Mach M (2019) Levetiracetam combined with ACEA, highly selective cannabinoid CB1 receptor agonist changes neurogenesis in mouse brain. Neurosci Lett 696:79–86. https://doi.org/10.1016/j.neulet.2018.12.016
Andres-Mach M, Haratym-Maj A, Zagaja M, Rola R, Maj M, Chrościńska-Krawczyk M, Luszczki JJ (2015) ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs. Brain Res 1624:86–94. https://doi.org/10.1016/j.brainres.2015.07.028
Leija-Salazar M, Bermúdez de León M, González-Horta A, González-Hernández B (2020) Arachidonyl-2’-chloroethylamide (ACEA), a synthetic agonist of cannabinoid receptor, increases CB1R gene expression and reduces dyskinesias in a rat model of Parkinson’s disease. Pharmacol Biochem Behav 194:172950. https://doi.org/10.1016/j.pbb.2020.172950
Ilyasov AA, Milligan CE, Pharr EP, Howlett AC (2018) The endocannabinoid system and oligodendrocytes in health and disease. Front Neurosci 12:733. https://doi.org/10.3389/fnins.2018.00733
Manera C, Arena C, Chicca A (2016) Synthetic cannabinoid receptor agonists and antagonists: implication in CNS disorders. Recent Pat CNS Drug Discov 10(2):142–156. https://doi.org/10.2174/1574889810666160519113853
Götz MR, Collado JA, Fernández-Ruiz J, Fiebich BL, García-Toscano L, Gómez-Cañas M, Koch O, Leha A, Muñoz E, Navarrete C, Pazos MR, Holzgrabe U (2019) Structure-effect relationships of novel semi-synthetic cannabinoid derivatives. Front Pharmacol 10:1284. https://doi.org/10.3389/fphar.2019.01284
Citti, C., Linciano, P., Russo, F. et al. A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabimimetic activity higher than Δ9-tetrahydrocannabinol: Δ9-Tetrahydrocannabiphorol. Sci Rep 9, 20335 (2019). https://doi.org/10.1038/s41598-019-56785-1
Acknowledgements
We are grateful to Dr. Antonio Currais, The Salk Institute for Biological Studies, La Jolla, San Diego, USA, for proofreading of the manuscript.
Funding
This research received no external funding.
Author information
Authors and Affiliations
Contributions
SZ: conceptualization, supervision, writing—drafting, review and editing, data analysis, finalization of the manuscript, AJ: writing—review and editing, HK, FKG, UG: literature search, data analysis, original draft preparation. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Consent for publication
All authors have read and agreed to the published version of the manuscript. All authors agree to be accountable for all aspects of work ensuring integrity and accuracy.
Ethical approval
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Khan, H., Ghori, F.K., Ghani, U. et al. Cannabinoid and endocannabinoid system: a promising therapeutic intervention for multiple sclerosis. Mol Biol Rep 49, 5117–5131 (2022). https://doi.org/10.1007/s11033-022-07223-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11033-022-07223-5