Skip to main content

Advertisement

Log in

Cannabinoid and endocannabinoid system: a promising therapeutic intervention for multiple sclerosis

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a chronic and complex neurodegenerative disease, distinguished by the presence of lesions in the central nervous system (CNS) due to exacerbated immunological responses that inflict oligodendrocytes and the myelin sheath of axons. In recent years, studies have focused on targeted therapeutics for MS that emphasize the role of G protein-coupled receptors (GPCRs), specifically cannabinoids receptors. Clinical studies have suggested the therapeutic potential of cannabinoids derived from Cannabis sativa in relieving pain, tremors and spasticity. Cannabinoids also appear to prevent exaggerated immune responses in CNS due to compromised blood–brain barrier. Both, endocannabinoid system (ECS) modulators and cannabinoid ligands actively promote oligodendrocyte survival by regulating signaling, migration and myelination of nerve cells. The cannabinoid receptors 1 (CB1) and 2 (CB2) of ECS are the main ones in focus for therapeutic intervention of MS. Various CB1/CB2 receptors agonists have been experimentally studied which showed anti-inflammatory properties and are considered to be effective as potential therapeutics for MS. In this review, we focused on the exacerbated immune attack on nerve cells and the role of the cannabinoids and its interaction with the ECS in CNS during MS pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Banks WA (2015) The blood-brain barrier in neuroimmunology: tales of separation and assimilation. Brain Behav Immun 44:1–8. https://doi.org/10.1016/j.bbi.2014.08.007

    Article  CAS  PubMed  Google Scholar 

  2. Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, Thompson AJ (2014) Atlas of multiple sclerosis 2013: a growing global problem with widespread inequity. Neurology 83(11):1022–1024. https://doi.org/10.1212/WNL.0000000000000768

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chiurchiù V, van der Stelt M, Centonze D, Maccarrone M (2018) The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: clues for other neuroinflammatory diseases. Prog Neurobiol 160:82–100. https://doi.org/10.1016/j.pneurobio.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  4. Tullman MJ (2013) Overview of the epidemiology, diagnosis, and disease progression associated with multiple sclerosis. Am J Manage Care 19(2 Suppl):S15-20

    Google Scholar 

  5. Kamińska J, Koper OM, Piechal K, Kemona H (2017) Multiple sclerosis—etiology and diagnostic potential. Postepy Hig Med Dosw (Online) 71:551–563. https://doi.org/10.5604/01.3001.0010.3836

    Article  Google Scholar 

  6. Zéphir H (2018) Progress in understanding the pathophysiology of multiple sclerosis. Revue Neurologique 174(6):358–363. https://doi.org/10.1016/j.neurol.2018.03.006

    Article  PubMed  Google Scholar 

  7. Weiner HL (2008) A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J Neurol 255(Suppl 1):3–11. https://doi.org/10.1007/s00415-008-1002-8

    Article  CAS  PubMed  Google Scholar 

  8. International Multiple Sclerosis Genetics Consortium; Wellcome Trust Case Control Consortium 2, Sawcer S, Hellenthal G, Pirinen M et al (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476(7359):214–219. https://doi.org/10.1038/nature10251

    Article  CAS  Google Scholar 

  9. Du C, Xie X (2012) G protein-coupled receptors as therapeutic targets for multiple sclerosis. Cell Res 22(7):1108–1128. https://doi.org/10.1038/cr.2012.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calabrese M, Filippi M, Gallo P (2010) Cortical lesions in multiple sclerosis. Nat Rev Neurol 6(8):438–444. https://doi.org/10.1038/nrneurol.2010.93

    Article  PubMed  Google Scholar 

  11. Lassmann H (2018) Multiple sclerosis pathology. Cold Spring Harb Perspect Med 8(3):a028936. https://doi.org/10.1101/cshperspect.a028936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lassmann H (2008) Models of multiple sclerosis: new insights into pathophysiology and repair. Curr Opin Neurol 21(3):242–247. https://doi.org/10.1097/WCO.0b013e3282fee94a

    Article  CAS  PubMed  Google Scholar 

  13. Hemmer B, Kerschensteiner M, Korn T (2015) Role of the innate and adaptive immune responses in the course of multiple sclerosis. Lancet Neurol 14(4):406–419. https://doi.org/10.1016/S1474-4422(14)70305-9

    Article  CAS  PubMed  Google Scholar 

  14. Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101. https://doi.org/10.1016/S0065-2776(07)96002-2

    Article  CAS  PubMed  Google Scholar 

  15. Ouyang W, Kolls JK, Zheng Y (2008) The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 28(4):454–467. https://doi.org/10.1016/j.immuni.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Junttila IS (2018) Tuning the cytokine responses: an update on interleukin (IL)-4 and IL-13 receptor complexes. Front Immunol 9:888. https://doi.org/10.3389/fimmu.2018.00888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H, Kim HJ, Bar-Or A (2007) Distinct effector cytokine profiles of memory and naive human B cell subsets and implication in multiple sclerosis. J Immunol 178(10):6092–6099. https://doi.org/10.4049/jimmunol.178.10.6092

    Article  CAS  PubMed  Google Scholar 

  18. Kouchaki E, Salehi M, Reza Sharif M, Nikoueinejad H, Akbari H (2014) Numerical status of CD4(+)CD25(+)FoxP3(+) and CD8(+)CD28(-) regulatory T cells in multiple sclerosis. Iran J Basic Med Sci 17(4):250–255

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Volpe E, Sambucci M, Battistini L, Borsellino G (2016) Fas-fas ligand: checkpoint of T cell functions in multiple sclerosis. Front Immunol 7:382. https://doi.org/10.3389/fimmu.2016.00382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Varatharaj A, Galea I (2017) The blood-brain barrier in systemic inflammation. Brain Behav Immun 60:1–12. https://doi.org/10.1016/j.bbi.2016.03.010

    Article  CAS  PubMed  Google Scholar 

  21. Mitroulis I, Alexaki VI, Kourtzelis I, Ziogas A, Hajishengallis G, Chavakis T (2015) Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol Ther 147:123–135. https://doi.org/10.1016/j.pharmthera.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  22. Mirshafiey A, Asghari B, Ghalamfarsa G, Jadidi-Niaragh F, Azizi G (2014) The significance of matrix metalloproteinases in the immunopathogenesis and treatment of multiple sclerosis. Sultan Qaboos Univ Med J 14(1):e13-25. https://doi.org/10.12816/0003332

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gerwien H, Hermann S, Zhang X, Korpos E, Song J, Kopka K, Faust A, Wenning C, Gross CC, Honold L, Melzer N, Opdenakker G, Wiendl H, Schäfers M, Sorokin L (2016) Imaging matrix metalloproteinase activity in multiple sclerosis as a specific marker of leukocyte penetration of the blood-brain barrier. Sci Transl Med 8(364):364ra152. https://doi.org/10.1126/scitranslmed.aaf8020

    Article  CAS  PubMed  Google Scholar 

  24. Pérez-Cerdá F, Sánchez-Gómez MV, Matute C (2016) The link of inflammation and neurodegeneration in progressive multiple sclerosis. Mult Scler Demyelinating Disord 1:9. https://doi.org/10.1186/s40893-016-0012-0

    Article  Google Scholar 

  25. Ortiz GG, Pacheco-Moisés FP, Bitzer-Quintero OK, Ramírez-Anguiano AC, Flores-Alvarado LJ, Ramírez-Ramírez V, Macias-Islas MA, Torres-Sánchez ED (2013) Immunology and oxidative stress in multiple sclerosis: clinical and basic approach. Clin Dev Immunol 2013:708659. https://doi.org/10.1155/2013/708659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tobore TO (2021) Oxidative/nitroxidative stress and multiple sclerosis. J Mol Neurosci 71(3):506–514. https://doi.org/10.1007/s12031-020-01672-y

    Article  CAS  PubMed  Google Scholar 

  27. Agah E, Zardoui A, Saghazadeh A, Ahmadi M, Tafakhori A, Rezaei N (2018) Osteopontin (OPN) as a CSF and blood biomarker for multiple sclerosis: a systematic review and meta-analysis. PLoS ONE 13(1):e0190252. https://doi.org/10.1371/journal.pone.0190252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Levite M (2017) Glutamate, T cells and multiple sclerosis. J Neural Transm (Vienna) 124(7):775–798. https://doi.org/10.1007/s00702-016-1661-z

    Article  CAS  Google Scholar 

  29. Brunt TM, Bossong MG (2020) The neuropharmacology of cannabinoid receptor ligands in central signaling pathways. Eur J Neurosci. https://doi.org/10.1111/ejn.14982

    Article  PubMed  Google Scholar 

  30. Gülck T, Møller BL (2020) Phytocannabinoids: origins and biosynthesis. Trends Plant Sci 25(10):985–1004. https://doi.org/10.1016/j.tplants.2020.05.005

    Article  CAS  PubMed  Google Scholar 

  31. Aizpurua-Olaizola O, Soydaner U, Öztürk E, Schibano D, Simsir Y, Navarro P, Etxebarria N, Usobiaga A (2016) Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. J Nat Prod 79(2):324–331. https://doi.org/10.1021/acs.jnatprod.5b00949

    Article  CAS  PubMed  Google Scholar 

  32. Patil KR, Goyal SN, Sharma C, Patil CR, Ojha S (2015) Phytocannabinoids for cancer therapeutics: recent updates and future prospects. Curr Med Chem 22(30):3472–3501. https://doi.org/10.2174/0929867322666150716115057

    Article  CAS  PubMed  Google Scholar 

  33. Rog DJ, Nurmikko TJ, Friede T, Young CA (2005) Randomized, controlled trial of cannabis-based medicine in central pain in multiple sclerosis. Neurology 65:812–819

    Article  Google Scholar 

  34. Casey SL, Atwal N, Vaughan CW (2017) Cannabis constituent synergy in a mouse neuropathic pain model. Pain 158(12):2452–2460. https://doi.org/10.1097/j.pain.0000000000001051

    Article  CAS  PubMed  Google Scholar 

  35. Alkislar I, Miller AR, Hohmann AG, Sadaka AH, Cai X, Kulkarni P, Ferris CF (2021) Inhaled cannabis suppresses chemotherapy-induced neuropathic nociception by decoupling the raphe nucleus: a functional imaging study in rats. Biol Psychiatry Cogn Neurosci Neuroimaging 6(4):479–489. https://doi.org/10.1016/j.bpsc.2020.11.015

    Article  PubMed  Google Scholar 

  36. Mitchell VA, Harley J, Casey SL, Vaughan AC, Winters B, Vaughan CW (2021) Oral efficacy of Δ(9)-tetrahydrocannabinol and cannabidiol in a mouse neuropathic pain model. Neuropharmacology 189:108529. https://doi.org/10.1016/j.neuropharm.2021.108529

    Article  CAS  PubMed  Google Scholar 

  37. Morales P, Hurst DP, Reggio PH (2017) Molecular targets of the phytocannabinoids: a complex picture. Prog Chem Org Nat Prod 103:103–131. https://doi.org/10.1007/978-3-319-45541-9_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Turner SE, Williams CM, Iversen L, Whalley BJ (2017) Molecular pharmacology of phytocannabinoids. Prog Chem Org Nat Prod 103:61–101. https://doi.org/10.1007/978-3-319-45541-9_3

    Article  CAS  PubMed  Google Scholar 

  39. Fantegrossi WE, Moran JH, Radominska-Pandya A, Prather PL (2014) Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity? Life Sci 97(1):45–54. https://doi.org/10.1016/j.lfs.2013.09.017

    Article  CAS  PubMed  Google Scholar 

  40. Irving A, Abdulrazzaq G, Chan SLF, Penman J, Harvey J, Alexander SPH (2017) Cannabinoid receptor-related orphan G protein-coupled receptors. Adv Pharmacol 80:223–247. https://doi.org/10.1016/bs.apha.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  41. Chiba T, Ueno S, Obara Y, Nakahata N (2011) A synthetic cannabinoid, CP55940, inhibits lipopolysaccharide-induced cytokine mRNA expression in a cannabinoid receptor-independent mechanism in rat cerebellar granule cells. J Pharm Pharmacol 63(5):636–647. https://doi.org/10.1111/j.2042-7158.2011.01250.x

    Article  CAS  PubMed  Google Scholar 

  42. Tomiyama KI, Funada M (2021) Synthetic cannabinoid CP-55,940 induces apoptosis in a human skeletal muscle model via regulation of CB1 receptors and L-type Ca2+ channels. Arch Toxicol 95(2):617–630. https://doi.org/10.1007/s00204-020-02944-7

    Article  CAS  PubMed  Google Scholar 

  43. Alsalem M, Altarifi A, Haddad M, Aldossary SA, Kalbouneh H, Aldaoud N, Saleh T, El-Salem K (2019) Antinociceptive and abuse potential effects of cannabinoid/opioid combinations in a chronic pain model in rats. Brain Sci 9(11):328. https://doi.org/10.3390/brainsci9110328

    Article  CAS  PubMed Central  Google Scholar 

  44. Maguire DR, France CP (2016) Additive antinociceptive effects of mixtures of the κ-opioid receptor agonist spiradoline and the cannabinoid receptor agonist CP55940 in rats. Behav Pharmacol 27(1):69–72. https://doi.org/10.1097/FBP.0000000000000184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Minervini V, France CP (2018) Effects of morphine/CP55940 mixtures on an impulsive choice task in rhesus monkeys. Behav Pharmacol 29(1):60–70. https://doi.org/10.1097/FBP.0000000000000339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Frontera JL, Gonzalez Pini VM, Messore FL, Brusco A (2018) Exposure to cannabinoid agonist WIN 55,212–2 during early adolescence increases alcohol preference and anxiety in CD1 mice. Neuropharmacology 137:268–274. https://doi.org/10.1016/j.neuropharm.2018.05.018

    Article  CAS  PubMed  Google Scholar 

  47. Aguilar MA, Ledesma JC, Rodríguez-Arias M, Penalva C, Manzanedo C, Miñarro J, Arenas MC (2017) Adolescent exposure to the synthetic cannabinoid WIN 55212–2 modifies cocaine withdrawal symptoms in adult mice. Int J Mol Sci 18(6):1326. https://doi.org/10.3390/ijms18061326

    Article  CAS  PubMed Central  Google Scholar 

  48. Alarcon TA, Areal LB, Herlinger AL, Paiva KK, Cicilini MA, Martins-Silva C, Pires RGW (2020) The cannabinoid agonist WIN-2 affects acquisition but not consolidation of a spatial information in training and retraining processes: Relation with transcriptional regulation of the endocannabinoid system? Behav Brain Res 377:112231. https://doi.org/10.1016/j.bbr.2019.112231

    Article  CAS  PubMed  Google Scholar 

  49. Shahbazi F, Grandi V, Banerjee A, Trant JF (2020) Cannabinoids and cannabinoid receptors: the story so far. iScience 23(7):101301. https://doi.org/10.1016/j.isci.2020.101301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsuboi K, Uyama T, Okamoto Y, Ueda N (2018) Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm Regen 38:28. https://doi.org/10.1186/s41232-018-0086-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cristino L, Bisogno T, Di Marzo V (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 16(1):9–29. https://doi.org/10.1038/s41582-019-0284-z

    Article  PubMed  Google Scholar 

  52. Placzek EA, Okamoto Y, Ueda N, Barker EL (2008) Membrane microdomains and metabolic pathways that define anandamide and 2-arachidonyl glycerol biosynthesis and breakdown. Neuropharmacology 55(7):1095–1104. https://doi.org/10.1016/j.neuropharm.2008.07.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jain T, Wager-Miller J, Mackie K, Straiker A (2013) Diacylglycerol lipaseα (DAGLα) and DAGLβ cooperatively regulate the production of 2-arachidonoyl glycerol in autaptic hippocampal neurons. Mol Pharmacol 84(2):296–302. https://doi.org/10.1124/mol.113.085217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346(6284):561–564. https://doi.org/10.1038/346561a0

    Article  CAS  PubMed  Google Scholar 

  55. Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365(6441):61–65. https://doi.org/10.1038/365061a0

    Article  CAS  PubMed  Google Scholar 

  56. Miller LK, Devi LA (2011) The highs and lows of cannabinoid receptor expression in disease: mechanisms and their therapeutic implications. Pharmacol Rev 63(3):461–470. https://doi.org/10.1124/pr.110.003491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mackie K (2005) Distribution of cannabinoid receptors in the central and peripheral nervous system. Handb Exp Pharmacol 168:299–325. https://doi.org/10.1007/3-540-26573-2_10

    Article  CAS  Google Scholar 

  58. Nyíri G, Cserép C, Szabadits E, Mackie K, Freund TF (2005) CB1 cannabinoid receptors are enriched in the perisynaptic annulus and on preterminal segments of hippocampal GABAergic axons. Neuroscience 136(3):811–822. https://doi.org/10.1016/j.neuroscience.2005.01.026

    Article  CAS  PubMed  Google Scholar 

  59. Katona I, Urbán GM, Wallace M, Ledent C, Jung KM, Piomelli D, Mackie K, Freund TF (2006) Molecular composition of the endocannabinoid system at glutamatergic synapses. J Neurosci 26(21):5628–5637. https://doi.org/10.1523/JNEUROSCI.0309-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Fede C, Albertin G, Petrelli L, Sfriso MM, Biz C, De Caro R, Stecco C (2016) Expression of the endocannabinoid receptors in human fascial tissue. Eur J Histochem 60(2):2643. https://doi.org/10.4081/ejh.2016.2643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Puhl SL (2020) Cannabinoid-sensitive receptors in cardiac physiology and ischaemia. Biochim Biophys Acta Mol Cell Res 1867(3):118462. https://doi.org/10.1016/j.bbamcr.2019.03.009

    Article  CAS  PubMed  Google Scholar 

  62. Zou S, Kumar U (2018) Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int J Mol Sci 19(3):833. https://doi.org/10.3390/ijms19030833

    Article  CAS  PubMed Central  Google Scholar 

  63. Castillo PE, Younts TJ, Chávez AE, Hashimotodani Y (2012) Endocannabinoid signaling and synaptic function. Neuron 76(1):70–81. https://doi.org/10.1016/j.neuron.2012.09.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153(2):240–251. https://doi.org/10.1038/sj.bjp.0707584

    Article  CAS  PubMed  Google Scholar 

  65. Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J (2020) Endocannabinoid system components as potential biomarkers in psychiatry. Front Psychiatry 11:315. https://doi.org/10.3389/fpsyt.2020.00315

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gómez Del Pulgar T, De Ceballos ML, Guzmán M, Velasco G (2002) Cannabinoids protect astrocytes from ceramide-induced apoptosis through the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 277(39):36527–36533. https://doi.org/10.1074/jbc.M205797200

    Article  CAS  PubMed  Google Scholar 

  67. Weber MS, Hemmer B (2010) Cooperation of B cells and T cells in the pathogenesis of multiple sclerosis. Results Probl Cell Differ 51:115–126. https://doi.org/10.1007/400_2009_21

    Article  CAS  PubMed  Google Scholar 

  68. Ghigo A, Damilano F, Braccini L, Hirsch E (2010) PI3K inhibition in inflammation: toward tailored therapies for specific diseases. BioEssays 32(3):185–196. https://doi.org/10.1002/bies.200900150

    Article  CAS  PubMed  Google Scholar 

  69. Mestre L, Docagne F, Correa F, Loría F, Hernangómez M, Borrell J, Guaza C (2009) A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol Cell Neurosci 40(2):258–266. https://doi.org/10.1016/j.mcn.2008.10.015

    Article  CAS  PubMed  Google Scholar 

  70. Amenta PS, Jallo JI, Tuma RF, Hooper DC, Elliott MB (2014) Cannabinoid receptor type-2 stimulation, blockade, and deletion alter the vascular inflammatory responses to traumatic brain injury. J Neuroinflamm 11:191. https://doi.org/10.1186/s12974-014-0191-6

    Article  CAS  Google Scholar 

  71. Eljaschewitsch E, Witting A, Mawrin C, Lee T, Schmidt PM, Wolf S, Hoertnagl H, Raine CS, Schneider-Stock R, Nitsch R, Ullrich O (2006) The endocannabinoid anandamide protects neurons during CNS inflammation by induction of MKP-1 in microglial cells. Neuron 49(1):67–79. https://doi.org/10.1016/j.neuron.2005.11.027

    Article  CAS  PubMed  Google Scholar 

  72. Palazuelos J, Davoust N, Julien B, Hatterer E, Aguado T, Mechoulam R, Benito C, Romero J, Silva A, Guzmán M, Nataf S, Galve-Roperh I (2008) The CB(2) cannabinoid receptor controls myeloid progenitor trafficking: involvement in the pathogenesis of an animal model of multiple sclerosis. J Biol Chem 283(19):13320–13329. https://doi.org/10.1074/jbc.M707960200

    Article  CAS  PubMed  Google Scholar 

  73. van Niekerk G, Mabin T, Engelbrecht AM (2019) Anti-inflammatory mechanisms of cannabinoids: an immunometabolic perspective. Inflammopharmacology 27(1):39–46. https://doi.org/10.1007/s10787-018-00560-7

    Article  CAS  PubMed  Google Scholar 

  74. Nagarkatti P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M (2009) Cannabinoids as novel anti-inflammatory drugs. Future Med Chem 1(7):1333–1349. https://doi.org/10.4155/fmc.09.93

    Article  CAS  PubMed  Google Scholar 

  75. Correa F, Mestre L, Docagne F, Guaza C (2005) Activation of cannabinoid CB2 receptor negatively regulates IL-12p40 production in murine macrophages: role of IL-10 and ERK1/2 kinase signaling. Br J Pharmacol 145(4):441–448. https://doi.org/10.1038/sj.bjp.0706215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Correa F, Docagne F, Mestre L, Clemente D, Hernangómez M, Loría F, Guaza C (2009) A role for CB2 receptors in anandamide signalling pathways involved in the regulation of IL-12 and IL-23 in microglial cells. Biochem Pharmacol 77(1):86–100. https://doi.org/10.1016/j.bcp.2008.09.014

    Article  CAS  PubMed  Google Scholar 

  77. Berkovich R (2013) Treatment of acute relapses in multiple sclerosis. Neurotherapeutics 10(1):97–105. https://doi.org/10.1007/s13311-012-0160-7

    Article  CAS  PubMed  Google Scholar 

  78. Berkovich R, Agius MA (2014) Mechanisms of action of ACTH in the management of relapsing forms of multiple sclerosis. Ther Adv Neurol Disord 7(2):83–96. https://doi.org/10.1177/1756285613518599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kutz CF, Dix AL (2018) Repository corticotropin injection in multiple sclerosis: an update. Neurodegener Dis Manage 8(4):217–225. https://doi.org/10.2217/nmt-2018-0008

    Article  Google Scholar 

  80. Yang Y, Harmon CM (2020) Molecular determinants of ACTH receptor for ligand selectivity. Mol Cell Endocrinol 503:110688. https://doi.org/10.1016/j.mce.2019.110688

    Article  CAS  PubMed  Google Scholar 

  81. Ferraro D, Mirante VG, Losi L, Villa E, Simone AM, Vitetta F, Federzoni L, Nichelli PF, Sola P (2015) Methylprednisolone-induced toxic hepatitis after intravenous pulsed therapy for multiple sclerosis relapses. Neurologist 19(6):153–154. https://doi.org/10.1097/NRL.0000000000000029

    Article  PubMed  Google Scholar 

  82. Vasheghani-Farahani A, Sahraian MA, Darabi L, Aghsaie A, Minagar A (2011) Incidence of various cardiac arrhythmias and conduction disturbances due to high dose intravenous methylprednisolone in patients with multiple sclerosis. J Neurol Sci 309(1–2):75–78. https://doi.org/10.1016/j.jns.2011.07.018

    Article  CAS  PubMed  Google Scholar 

  83. Winkelmann A, Loebermann M, Reisinger EC, Hartung HP, Zettl UK (2016) Disease-modifying therapies and infectious risks in multiple sclerosis. Nat Rev Neurol 12(4):217–233. https://doi.org/10.1038/nrneurol.2016.21

    Article  CAS  PubMed  Google Scholar 

  84. Gómez-Figueroa E, Gutierrez-Lanz E, Alvarado-Bolaños A, Casallas-Vanegas A, Garcia-Estrada C, Zabala-Angeles I, Cadena-Fernandez A, Veronica RA, Irene TF, Flores-Rivera J (2021) Cyclophosphamide treatment in active multiple sclerosis. Neurol Sci 42(9):3775–3780. https://doi.org/10.1007/s10072-021-05052-1

    Article  PubMed  Google Scholar 

  85. Confavreux C, O’Connor P, Comi G, Freedman MS, Miller AE, Olsson TP, Wolinsky JS, Bagulho T, Delhay JL, Dukovic D, Truffinet P, Kappos L, TOWER Trial Group (2014) Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol 13(3):247–256. https://doi.org/10.1016/S1474-4422(13)70308-9

    Article  CAS  PubMed  Google Scholar 

  86. Hainke U, Thomas K, Ziemssen T (2016) Laquinimod in the treatment of relapsing remitting multiple sclerosis. Expert Opin Drug Metab Toxicol 12(6):701–709. https://doi.org/10.1080/17425255.2016.1179279

    Article  CAS  PubMed  Google Scholar 

  87. Fernández Bargiela N, Mondelo García C, Giménez Arufe V, Vizoso Hermida JR, Martín Herranz I (2020) Fingolimod in multiple sclerosis: profile of use in habitual practice. Eur J Hosp Pharm 27(6):346–349. https://doi.org/10.1136/ejhpharm-2018-001840

    Article  PubMed  Google Scholar 

  88. Ganji A, Monfared ME, Shapoori S, Nourbakhsh P, Ghazavi A, Ghasami K, Mosayebi G (2020) Effects of interferon and glatiramer acetate on cytokine patterns in multiple sclerosis patients. Cytokine 126:154911. https://doi.org/10.1016/j.cyto.2019.154911

    Article  CAS  PubMed  Google Scholar 

  89. Giedraitiene N, Kaubrys G, Kizlaitiene R, Bagdonaite L, Griskevicius L, Valceckiene V, Stoskus M (2015) Therapeutic plasma exchange in multiple sclerosis patients with abolished interferon-beta bioavailability. Med Sci Monit 21:1512–1519. https://doi.org/10.12659/MSM.894119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lehmann HC, Hartung HP, Hetzel GR, Stüve O, Kieseier BC (2006) Plasma exchange in neuroimmunological disorders: Part 1: rationale and treatment of inflammatory central nervous system disorders. Arch Neurol 63(7):930–935. https://doi.org/10.1001/archneur.63.7.930

    Article  PubMed  Google Scholar 

  91. Corey-Bloom J, Wolfson T, Gamst A, Jin S, Marcotte TD, Bentley H, Gouaux B (2012) Smoked cannabis for spasticity in multiple sclerosis: a randomized, placebo-controlled trial. CMAJ 184(10):1143–1150. https://doi.org/10.1503/cmaj.110837

    Article  PubMed  PubMed Central  Google Scholar 

  92. Schimrigk S, Marziniak M, Neubauer C, Kugler EM, Werner G, Abramov-Sommariva D (2017) Dronabinol is a safe long-term treatment option for neuropathic pain patients. Eur Neurol 78(5–6):320–329. https://doi.org/10.1159/000481089

    Article  CAS  PubMed  Google Scholar 

  93. Fraguas-Sánchez AI, Torres-Suárez AI (2018) Medical use of cannabinoids. Drugs 78(16):1665–1703. https://doi.org/10.1007/s40265-018-0996-1

    Article  CAS  PubMed  Google Scholar 

  94. Diana G, Malloni M, Pieri M (2003) Effects of the synthetic cannabinoid nabilone on spatial learning and hippocampal neurotransmission. Pharmacol Biochem Behav 75(3):585–591. https://doi.org/10.1016/s0091-3057(03)00127-8

    Article  CAS  PubMed  Google Scholar 

  95. Tsang CC, Giudice MG (2016) Nabilone for the Management of Pain. Pharmacotherapy 36(3):273–286. https://doi.org/10.1002/phar.1709

    Article  CAS  PubMed  Google Scholar 

  96. Kim J, Grobelna A (2017) Nabilone for chronic pain management: A review of clinical effectiveness and guidelines. CADTH

    Google Scholar 

  97. Russo E, Guy GW (2006) A tale of two cannabinoids: the therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. Med Hypotheses 66(2):234–246. https://doi.org/10.1016/j.mehy.2005.08.026

    Article  CAS  PubMed  Google Scholar 

  98. Podda G, Constantinescu CS (2012) Nabiximols in the treatment of spasticity, pain and urinary symptoms due to multiple sclerosis. Expert Opin Biol Ther 12(11):1517–1531. https://doi.org/10.1517/14712598.2012.721765

    Article  CAS  PubMed  Google Scholar 

  99. Alessandria G, Meli R, Infante MT, Vestito L, Capello E, Bandini F (2020) Long-term assessment of the cognitive effects of nabiximols in patients with multiple sclerosis: a pilot study. Clin Neurol Neurosurg 196:105990. https://doi.org/10.1016/j.clineuro.2020.105990

    Article  PubMed  Google Scholar 

  100. Novotna A, Mares J, Ratcliffe S, Novakova I, Vachova M, Zapletalova O, Gasperini C, Pozzilli C, Cefaro L, Comi G, Rossi P, Ambler Z, Stelmasiak Z, Erdmann A, Montalban X, Klimek A, Davies P, Sativex Spasticity Study Group (2011) A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols* (Sativex(®)), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur J Neurol 18(9):1122–1131. https://doi.org/10.1111/j.1468-1331.2010.03328.x

    Article  CAS  PubMed  Google Scholar 

  101. Markovà J, Essner U, Akmaz B, Marinelli M, Trompke C, Lentschat A, Vila C (2019) Sativex® as add-on therapy vs. further optimized first-line ANTispastics (SAVANT) in resistant multiple sclerosis spasticity: a double-blind, placebo-controlled randomised clinical trial. Int J Neurosci 129(2):119–128. https://doi.org/10.1080/00207454.2018.1481066

    Article  CAS  PubMed  Google Scholar 

  102. Berrendero F, Sánchez A, Cabranes A, Puerta C, Ramos JA, García-Merino A, Fernández-Ruiz J (2001) Changes in cannabinoid CB(1) receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse 41(3):195–202. https://doi.org/10.1002/syn.1075

    Article  CAS  PubMed  Google Scholar 

  103. Pryce G, Ahmed Z, Hankey DJ, Jackson SJ, Croxford JL, Pocock JM, Ledent C, Petzold A, Thompson AJ, Giovannoni G, Cuzner ML, Baker D (2003) Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 126(Pt 10):2191–2202. https://doi.org/10.1093/brain/awg224

    Article  PubMed  Google Scholar 

  104. Milano W, Capasso A (2019) Cannabinoids involvement in neurodegenerative diseases. Res J Pharmacol 13(2):16–26. https://doi.org/10.36478/rjpharm.2019.16.26

    Article  Google Scholar 

  105. Arévalo-Martín A, Vela JM, Molina-Holgado E, Borrell J, Guaza C (2003) Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci 23(7):2511–2516. https://doi.org/10.1523/JNEUROSCI.23-07-02511.2003

    Article  PubMed  PubMed Central  Google Scholar 

  106. Tomas-Roig J, Havemann-Reinecke U (2019) Gene expression signature in brain regions exposed to long-term psychosocial stress following acute challenge with cannabinoid drugs. Psychoneuroendocrinology 102:1–8. https://doi.org/10.1016/j.psyneuen.2018.11.023

    Article  CAS  PubMed  Google Scholar 

  107. Tomas-Roig J, Agbemenyah HY, Celarain N, Quintana E, Ramió-Torrentà L, Havemann-Reinecke U (2020) Dose-dependent effect of cannabinoid WIN-55,212–2 on myelin repair following a demyelinating insult. Sci Rep 10(1):590. https://doi.org/10.1038/s41598-019-57290-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zagaja M, Haratym-Maj A, Szewczyk A, Rola R, Maj M, Łuszczki JJ, Andres-Mach M (2019) Levetiracetam combined with ACEA, highly selective cannabinoid CB1 receptor agonist changes neurogenesis in mouse brain. Neurosci Lett 696:79–86. https://doi.org/10.1016/j.neulet.2018.12.016

    Article  CAS  PubMed  Google Scholar 

  109. Andres-Mach M, Haratym-Maj A, Zagaja M, Rola R, Maj M, Chrościńska-Krawczyk M, Luszczki JJ (2015) ACEA (a highly selective cannabinoid CB1 receptor agonist) stimulates hippocampal neurogenesis in mice treated with antiepileptic drugs. Brain Res 1624:86–94. https://doi.org/10.1016/j.brainres.2015.07.028

    Article  CAS  PubMed  Google Scholar 

  110. Leija-Salazar M, Bermúdez de León M, González-Horta A, González-Hernández B (2020) Arachidonyl-2’-chloroethylamide (ACEA), a synthetic agonist of cannabinoid receptor, increases CB1R gene expression and reduces dyskinesias in a rat model of Parkinson’s disease. Pharmacol Biochem Behav 194:172950. https://doi.org/10.1016/j.pbb.2020.172950

    Article  CAS  PubMed  Google Scholar 

  111. Ilyasov AA, Milligan CE, Pharr EP, Howlett AC (2018) The endocannabinoid system and oligodendrocytes in health and disease. Front Neurosci 12:733. https://doi.org/10.3389/fnins.2018.00733

    Article  PubMed  PubMed Central  Google Scholar 

  112. Manera C, Arena C, Chicca A (2016) Synthetic cannabinoid receptor agonists and antagonists: implication in CNS disorders. Recent Pat CNS Drug Discov 10(2):142–156. https://doi.org/10.2174/1574889810666160519113853

    Article  CAS  PubMed  Google Scholar 

  113. Götz MR, Collado JA, Fernández-Ruiz J, Fiebich BL, García-Toscano L, Gómez-Cañas M, Koch O, Leha A, Muñoz E, Navarrete C, Pazos MR, Holzgrabe U (2019) Structure-effect relationships of novel semi-synthetic cannabinoid derivatives. Front Pharmacol 10:1284. https://doi.org/10.3389/fphar.2019.01284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Citti, C., Linciano, P., Russo, F. et al. A novel phytocannabinoid isolated from Cannabis sativa L. with an in vivo cannabimimetic activity higher than Δ9-tetrahydrocannabinol: Δ9-Tetrahydrocannabiphorol. Sci Rep 9, 20335 (2019). https://doi.org/10.1038/s41598-019-56785-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Antonio Currais, The Salk Institute for Biological Studies, La Jolla, San Diego, USA, for proofreading of the manuscript.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

SZ: conceptualization, supervision, writing—drafting, review and editing, data analysis, finalization of the manuscript, AJ: writing—review and editing, HK, FKG, UG: literature search, data analysis, original draft preparation. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Saadia Zahid.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Consent for publication

All authors have read and agreed to the published version of the manuscript. All authors agree to be accountable for all aspects of work ensuring integrity and accuracy.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Ghori, F.K., Ghani, U. et al. Cannabinoid and endocannabinoid system: a promising therapeutic intervention for multiple sclerosis. Mol Biol Rep 49, 5117–5131 (2022). https://doi.org/10.1007/s11033-022-07223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07223-5

Keywords