Skip to main content
Log in

Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

An increase in ambient temperature throughout the twenty-first century has been described as a “worldwide threat” for crop production. Due to their sessile lifestyles, plants have evolved highly sophisticated and complex heat stress response (HSR) mechanisms to respond to higher temperatures. The HSR allows plants to minimize the damages caused by heat stress (HS), thus enabling cellular protection. HSR is crucial for their lifecycle and yield, particularly for plants grown in the field. At the cellular level, HSR involves the production of heat shock proteins (HSPs) and other stress-responsive proteins to counter the negative effects of HS. The expression of most HSPs is transcriptionally regulated by heat shock transcription factors (HSFs). HSFs are a group of evolutionary conserved regulatory proteins present in all eukaryotes and regulate various stress responses and biological processes in plants. In recent years, significant progress has been made in deciphering the complex regulatory network of HSFs, and several HSFs not only from model plants but also from major crops have been functionally characterized. Therefore, this review explores the progress made in this fascinating research area and debates the further potential to breed thermotolerant crop cultivars through the modulation of HSF networks. Furthermore, we discussed the role of HSFs in plant HS tolerance in a class-specific manner and shed light on their functional diversity, which is evident from their mode of action. Additionally, some research gaps have been highlighted concerning class-specific manners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified from Huang et al. [71] and Haider et al. [6] with publishers’ permission

Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Material availability

Not applicable.

Code availability

Not applicable.

Abbreviations

HS:

Heat stress

HSR:

Heat stress response

HSFs:

Heat shock transcription factors

HSPs:

Heat shock proteins

TF:

Transcription factor

ROS:

Reactive oxygen species

DBD:

DNA-binding domain

OD:

Oligomerization domain

HR-A/B:

Hydrophobic associated-A/B region

NLS:

Nuclear localization signal

NES:

Nuclear export signal

AHA:

Activator peptide motif

HSEs:

Heat shock elements

RD:

Repression domain

HTH:

Helix-turn-helix motif

OE:

Overexpression

CS:

Co-suppression

JA:

Jasmonic acid

UPR:

Unfolded protein response

APX2:

Ascorbate peroxidase 2

H2O2 :

Hydrogen peroxide

DREB2A:

Dehydration-responsive element-binding protein 2A

OsGolS1:

Oryza sativa Galactinol synthase 1

ABA:

Abscisic acid

BRs:

Brassinosteroid

References

  1. Hunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA (2017) Agriculture in 2050: recalibrating targets for sustainable intensification. Bioscience 67(4):386–391

    Article  Google Scholar 

  2. Haider S, Iqbal J, Naseer S, Shaukat M, Abbasi BA, Yaseen T et al (2021) Unfolding molecular switches in plant heat stress resistance: a comprehensive review. Plant Cell Rep. https://doi.org/10.1007/s00299-021-02754-w

    Article  PubMed  Google Scholar 

  3. Raza A, Ashraf F, Zou X, Zhang X, Tosif H (2020) Plant adaptation and tolerance to environmental stresses: mechanisms and perspectives. Plant ecophysiology and adaptation under climate change: mechanisms and perspectives I. Springer, Singapore, pp 117–145

    Google Scholar 

  4. Zahra N, Shaukat K, Hafeez MB, Raza A, Hussain S, Chaudhary MT, Akram MZ, Kakavand SN, Saddiq MS, Wahid A (2021) Physiological and molecular responses to high, chilling, and freezing temperature in plant growth and production: consequences and mitigation possibilities. Harsh environment and plant resilience: molecular and functional aspects. New York, Springer

    Google Scholar 

  5. Stocker T (ed) (2014) Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  6. Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M, Bibi H et al (2021) Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. Plant Cell Rep. https://doi.org/10.1007/s00299-021-02696-3

    Article  PubMed  Google Scholar 

  7. Hatfield JL, Prueger JH (2015) Temperature extremes: Effect on plant growth and development. Weather Clim Extrem 10:4–10

    Article  Google Scholar 

  8. Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, Marmiroli N (2020) Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. J Exp Bot 71(13):3780–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hussain S, Khaliq A, Ali B, Hussain HA, Qadir T, Hussain S (2019) Temperature extremes: impact on rice growth and development. Plant abiotic stress tolerance. Springer, Cham, pp 153–171

    Chapter  Google Scholar 

  10. Raza A (2020) Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Rep. https://doi.org/10.1007/s00299-020-02635-8

    Article  PubMed  Google Scholar 

  11. Zhao J, Lu Z, Wang L, Jin B (2021) Plant responses to heat stress: physiology, transcription, noncoding RNAs, and epigenetics. Int J Mol Sci 22(1):117

    Article  CAS  Google Scholar 

  12. Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    Article  CAS  PubMed  Google Scholar 

  13. Jacob P, Hirt H, Bendahmane A (2017) The heat-shock protein/chaperone network and multiple stress resistance. Plant Biotechnol J 15(4):405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Raza A, Tabassum J, Kudapa H, Varshney RK (2021) Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol 41:1209–1232

    Article  PubMed  Google Scholar 

  15. Haslbeck M, Vierling E (2015) A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol 427(7):1537–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

  17. Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22(1):53–65

    Article  CAS  PubMed  Google Scholar 

  18. Fragkostefanakis S, Röth S, Schleiff E, Scharf KD (2015) Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ 38(9):1881–1895

    Article  CAS  PubMed  Google Scholar 

  19. Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (HSF) family: structure, function and evolution. Biochim Biophys Acta (BBA) Gene Regul Mech 1819(2):104–119

    Article  CAS  Google Scholar 

  20. Nover L, Scharf KD (1997) Heat stress proteins and transcription factors. Cell Mol Life Sci CMLS 53(1):80–103

    Article  CAS  PubMed  Google Scholar 

  21. Nover L, Scharf KD, Gagliardi D, Vergne P, Czarnecka-Verner E, Gurley WB (1996) The HSF world: classification and properties of plant heat stress transcription factors. Cell Stress Chaperones 1(4):215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pirkkala L, Nykänen P, Sistonen LEA (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15(7):1118–1131

    Article  CAS  PubMed  Google Scholar 

  23. Voellmy R (2004) On mechanisms that control heat shock transcription factor activity in metazoan cells. Cell Stress Chaperones 9(2):122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nover L, Bharti K, Döring P, Mishra SK, Ganguli A, Scharf KD (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6(3):177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Haider S, Rehman S, Ahmad Y, Raza A, Tabassum J, Javed T, Osman HS, Mahmood T (2021) In silico characterization and expression profiles of heat shock transcription factors (HSFs) in Maize (Zea mays L.). Agronomy 11:2335. https://doi.org/10.3390/agronomy11112335

    Article  CAS  Google Scholar 

  26. Ye J, Yang X, Hu G, Liu Q, Li W, Zhang L, Song X (2020) Genome-wide investigation of heat shock transcription factor family in wheat (Triticum aestivum L.) and possible roles in anther development. Int J Mol Sci 21(2):608

    Article  CAS  PubMed Central  Google Scholar 

  27. von Koskull-Döring P, Scharf KD, Nover L (2007) The diversity of plant heat stress transcription factors. Trends Plant Sci 12(10):452–457

    Article  CAS  Google Scholar 

  28. Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10(3):310–316

    Article  CAS  PubMed  Google Scholar 

  29. Guo M, Liu JH, Ma X, Luo DX, Gong ZH, Lu MH (2016) The plant heat stress transcription factors (HSFs): structure, regulation, and function in response to abiotic stresses. Front Plant Sci 7:114

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kotak S, Vierling E, Bäumlein H, von Koskull-Döring P (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19(1):182–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Harrison CJ, Bohm AA, Nelson HC (1994) Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 263(5144):224–227

    Article  CAS  PubMed  Google Scholar 

  32. Peteranderl R, Rabenstein M, Shin YK, Liu CW, Wemmer DE, King DS, Nelson HC (1999) Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor. Biochemistry 38(12):3559–3569

    Article  CAS  PubMed  Google Scholar 

  33. Czarnecka-Verner E, Pan S, Salem T, Gurley WB (2004) Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol Biol 56(1):57–75

    Article  CAS  PubMed  Google Scholar 

  34. Andrási N, Pettkó-Szandtner A, Szabados L (2021) Diversity of plant heat shock factors: regulation, interactions, and functions. J Exp Bot 72(5):1558–1575

    Article  PubMed  CAS  Google Scholar 

  35. Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16(12):1555–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoshida T, Ohama N, Nakajima J, Kidokoro S, Mizoi J, Nakashima K et al (2011) Arabidopsis HsfA1 transcription factors function as the main positive regulators in heat shock-responsive gene expression. Mol Genet Genomics 286(5):321–332

    Article  CAS  PubMed  Google Scholar 

  37. Liu HC, Liao HT, Charng YY (2011) The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, Cell Environ 34(5):738–751

    Article  CAS  Google Scholar 

  38. Liu HC, Charng YY (2013) Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development. Plant Physiol 163(1):276–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Albihlal WS, Obomighie I, Blein T, Persad R, Chernukhin I, Crespi M et al (2018) Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions. J Exp Bot 69(11):2847–2862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tian X, Wang F, Zhao Y, Lan T, Yu K, Zhang L et al (2020) Heat shock transcription factor A1b regulates heat tolerance in wheat and Arabidopsis through OPR3 and jasmonate signalling pathway. Plant Biotechnol J 18(5):1109

    Article  PubMed  Google Scholar 

  41. Shah Z, Shah SH, Ali GS, Munir I, Khan RS, Iqbal A et al (2020) Introduction of Arabidopsis’s heat shock factor HSFA1d mitigates adverse effects of heat stress on potato (Solanum tuberosum L.) plant. Cell Stress Chaperones 25(1):57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li G, Zhang Y, Zhang H, Zhang Y, Zhao L, Liu Z, Guo X (2019) Characteristics and regulating role in thermotolerance of the heat shock transcription factor ZmHSF12 from Zea mays L. J Plant Biol 62(5):329–341

    Article  CAS  Google Scholar 

  43. Li HC, Zhang HN, Li GL, Liu ZH, Zhang YM, Zhang HM, Guo XL (2015) Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis. Funct Plant Biol 42(11):1080–1091

    Article  CAS  PubMed  Google Scholar 

  44. Gai WX, Ma X, Li Y, Xiao JJ, Khan A, Li QH, Gong ZH (2020) CaHsfA1d improves plant thermotolerance via regulating the expression of stress-and antioxidant-related genes. Int J Mol Sci 21(21):8374

    Article  CAS  PubMed Central  Google Scholar 

  45. Hafeez MB, Zahra N, Zahra K, Raza A, Khan A, Shaukat K, Khan S (2021) Brassinosteroids: molecular and physiological responses in plant growth and abiotic stresses. Plant Stress 2:100029

    Article  CAS  Google Scholar 

  46. Nolan TM, Vukašinović N, Liu D, Russinova E, Yin Y (2020) Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32(2):295–318

    Article  CAS  PubMed  Google Scholar 

  47. Albertos P, Dündar G, Schenk P, Carrera S, Cavelius P, Sieberer T, Poppenberger B (2022) Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants. EMBO J. https://doi.org/10.15252/embj.2021108664

    Article  PubMed  PubMed Central  Google Scholar 

  48. Charng YY, Liu HC, Liu NY, Chi WT, Wang CN, Chang SH, Wang TT (2007) A heat-inducible transcription factor, HSFA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143(1):251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Haider S, Iqbal J, Shaukat M, Naseer S, Mahmood T (2021) The epigenetic chromatin-based regulation of somatic heat stress memory in plants. Plant Gene 27:100318

    Article  CAS  Google Scholar 

  50. Lämke J, Brzezinka K, Altmann S, Bäurle I (2016) A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory. EMBO J 35(2):162–175

    Article  PubMed  CAS  Google Scholar 

  51. Fragkostefanakis S, Mesihovic A, Simm S, Paupière MJ, Hu Y, Paul P et al (2016) HsfA2 controls the activity of developmentally and stress-regulated heat stress protection mechanisms in tomato male reproductive tissues. Plant Physiol 170(4):2461–2477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu Y, Mesihovic A, Jiménez-Gómez JM, Röth S, Gebhardt P, Bublak D et al (2020) Natural variation in HsfA2 pre-mRNA splicing is associated with changes in thermotolerance during tomato domestication. New Phytol 225(3):1297–1310

    Article  CAS  PubMed  Google Scholar 

  53. Cheng Q, Zhou Y, Liu Z, Zhang L, Song G, Guo Z et al (2015) An alternatively spliced heat shock transcription factor, OsHSFA 2dI, functions in the heat stress-induced unfolded protein response in rice. Plant Biol 17(2):419–429

    Article  CAS  PubMed  Google Scholar 

  54. Hue NT, Tran HT, Phan T, Nakamura J, Iwata T, Harano K et al (2013) Hsp90 and reactive oxygen species regulate thermotolerance of rice seedlings via induction of heat shock factor A2 (OsHSFA2) and galactinol synthase 1 (OsGolS1). Agric Sci 4:154–164

    Google Scholar 

  55. Guo XL, Yuan SN, Zhang HN, Zhang YY, Zhang YJ, Wang GY et al (2020) Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat (Triticum aestivum L.) and thermotolerance-regulation by TaHsfA2–10. BMC Plant Biol 20(1):1–18

    Article  CAS  Google Scholar 

  56. Liu Z, Li G, Zhang H, Zhang Y, Zhang Y, Duan S et al (2020) TaHsfA2–1, a new gene for thermotolerance in wheat seedlings: characterization and functional roles. J Plant Physiol 246:153135

    Article  PubMed  CAS  Google Scholar 

  57. Lin KF, Tsai MY, Lu CA, Wu SJ, Yeh CH (2018) The roles of Arabidopsis HSFA2, HSFA4a, and HSFA7a in the heat shock response and cytosolic protein response. Bot Stud 59(1):1–9

    Article  Google Scholar 

  58. Xin H, Zhang H, Zhong X, Lian Q, Dong A, Cao L et al (2017) Over-expression of LlHsfA2b, a lily heat shock transcription factor lacking trans-activation activity in yeast, can enhance tolerance to heat and oxidative stress in transgenic Arabidopsis seedlings. Plant Cell Tissue Organ Cult PCTOC 130(3):617–629

    Article  CAS  Google Scholar 

  59. Zhang H, Li G, Hu D, Zhang Y, Zhang Y, Shao H et al (2020) Functional characterization of maize heat shock transcription factor gene ZmHsf01 in thermotolerance. PeerJ 8:e8926

    Article  PubMed  PubMed Central  Google Scholar 

  60. Zhang X, Xu W, Ni D, Wang M, Guo G (2020) Genome-wide characterization of tea plant (Camellia sinensis) Hsf transcription factor family and role of CsHsfA2 in heat tolerance. BMC Plant Biol 20:1–17

    CAS  Google Scholar 

  61. Yoshida T, Sakuma Y, Todaka D, Maruyama K, Qin F, Mizoi J et al (2008) Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem Biophys Res Commun 368(3):515–521

    Article  CAS  PubMed  Google Scholar 

  62. Li Z, Zhang L, Wang A, Xu X, Li J (2013) Ectopic overexpression of SlHsfA3, a heat stress transcription factor from tomato, confers increased thermotolerance and salt hypersensitivity in germination in transgenic Arabidopsis. PLoS ONE 8(1):e54880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li XD, Wang XL, Cai YM, Wu JH, Mo BT, Yu ER (2017) Arabidopsis heat stress transcription factors A2 (HSFA2) and A3 (HSFA3) function in the same heat regulation pathway. Acta Physiol Plant 39(3):67

    Article  CAS  Google Scholar 

  64. Friedrich T, Oberkofler V, Trindade I, Altmann S, Brzezinka K, Lämke J et al (2021) Heteromeric HSFA2/HSFA3 complexes drive transcriptional memory after heat stress in Arabidopsis. Nat Commun 12(1):1–15

    Article  CAS  Google Scholar 

  65. Baniwal SK, Chan KY, Scharf KD, Nover L (2007) Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J Biol Chem 282(6):3605–3613

    Article  CAS  PubMed  Google Scholar 

  66. Qu AL, Ding YF, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432(2):203–207

    Article  CAS  PubMed  Google Scholar 

  67. Zhu WJ, Li PP, Xue CM, Chen M, Wang Z, Yang Q (2021) Potato plants overexpressing SpHsfA4c exhibit enhanced tolerance to high-temperature stress. Russ J Plant Physiol. https://doi.org/10.1134/S1021443721060248

    Article  Google Scholar 

  68. Andrási N, Rigó G, Zsigmond L, Pérez-Salamó I, Papdi C, Klement E et al (2019) The mitogen-activated protein kinase 4-phosphorylated heat shock factor A4A regulates responses to combined salt and heat stresses. J Exp Bot 70(18):4903–4918

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Du X, Li W, Sheng L, Deng Y, Wang Y, Zhang W et al (2018) Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress. BMC Plant Biol 18(1):1–10

    Article  CAS  Google Scholar 

  70. Wang C, Zhou Y, Yang X, Zhang B, Xu F, Wang Y et al (2022) The heat stress transcription factor LlHsfA4 enhanced basic thermotolerance through regulating ROS metabolism in lilies (Lilium longiflorum). Int J Mol Sci 23(1):572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Huang YC, Niu CY, Yang CR, Jinn TL (2016) The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiol 172(2):1182–1199

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kumar RR, Goswami S, Singh K, Dubey K, Rai GK, Singh B et al (2018) Characterization of novel heat-responsive transcription factor (TaHSFA6e) gene involved in regulation of heat shock proteins (HSPs)—a key member of heat stress-tolerance network of wheat. J Biotechnol 279:1–12

    Article  PubMed  CAS  Google Scholar 

  73. Poonia AK, Mishra SK, Sirohi P, Chaudhary R, Kanwar M, Germain H, Chauhan H (2020) Overexpression of wheat transcription factor (TaHsfA6b) provides thermotolerance in barley. Planta 252(4):1–14

    Article  CAS  Google Scholar 

  74. Bi H, Zhao Y, Li H, Liu W (2020) Wheat heat shock factor TaHsfA6f increases ABA levels and enhances tolerance to multiple abiotic stresses in transgenic plants. Int J Mol Sci 21(9):3121

    Article  CAS  PubMed Central  Google Scholar 

  75. Seni S, Kaur S, Malik P, Yadav IS, Sirohi P, Chauhan H et al (2021) Transcriptome based identification and validation of heat stress transcription factors in wheat progenitor species Aegilops speltoides. Sci Rep 11(1):1–15

    Article  CAS  Google Scholar 

  76. Sugio A, Dreos R, Aparicio F, Maule AJ (2009) The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21(2):642–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mesihovic A (2018) Regulation of the cellular response to elevated temperatures by heat stress transcription factor HsfA7 in “Solanum lycopersicum” (Doctoral dissertation, Johann Wolfgang Goethe-Universität Frankfurt am Main)

  78. Mesihovic A, Ullrich S, Rosenkranz RR, Gebhardt P, Bublak D, Eich H, Fragkostefanakis S (2022) HsfA7 coordinates the transition from mild to strong heat stress response by controlling the activity of the master regulator HsfA1a in tomato. Cell reports 38(2):110224

  79. Patel K, Bidalia A, Tripathi I, Gupta Y, Arora P, Rao KS (2021) Effect of heat stress on wild-type and A7a knockout mutant Arabidopsis thaliana plants. Vegetos. https://doi.org/10.1007/s42535-021-00272-4

    Article  Google Scholar 

  80. Ikeda M, Mitsuda N, Ohme-Takagi M (2011) Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance. Plant Physiol 157(3):1243–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fragkostefanakis S, Simm S, El-Shershaby A, Hu Y, Bublak D, Mesihovic A et al (2019) The repressor and co-activator HsfB1 regulates the major heat stress transcription factors in tomato. Plant Cell Environ 42(3):874–890

    Article  CAS  PubMed  Google Scholar 

  82. Rao S, Balyan S, Das JR, Verma R, Mathur S (2021) Transcriptional regulation of HSFA7 and post-transcriptional modulation of HSFB4a by miRNA4200 govern general and varietal thermotolerance in tomato. BioRxiv 7:1

    Google Scholar 

  83. Ma H, Wang C, Yang B, Cheng H, Wang Z, Mijiti A, Ma L (2016) CarHSFB2, a class B heat shock transcription factor, is involved in different developmental processes and various stress responses in chickpea (Cicer arietinum L.). Plant Mol Biol Reporter 34(1):1–14

  84. Hu XJ, Chen D, Lynne Mclntyre C, Fernanda Dreccer M, Zhang ZB, Drenth J et al (2018) Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Plant Cell Environ 41(1):79–98

    Article  CAS  PubMed  Google Scholar 

  85. Jiao SZ, Guo C, Yao WK, Zhang NB, Zhang JY, Xu WR (2022) An Amur grape VaHsfC1 is involved in multiple abiotic stresses. Sci Hortic 295:110785

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wants to thank several colleagues for the scientific discussion, which helped improve the manuscript’s content. The author apologizes to all colleagues whose relevant work could not be cited due to space limitations.

Funding

This work receives no external funding.

Author information

Authors and Affiliations

Authors

Contributions

SH and TM conceived the idea. SH, MS, and AR wrote the manuscript. AR, SH, JI, and TM revised and improved the manuscript.

Corresponding authors

Correspondence to Saqlain Haider or Ali Raza.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 31 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, S., Raza, A., Iqbal, J. et al. Analyzing the regulatory role of heat shock transcription factors in plant heat stress tolerance: a brief appraisal. Mol Biol Rep 49, 5771–5785 (2022). https://doi.org/10.1007/s11033-022-07190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07190-x

Keywords

Navigation