Skip to main content

Advertisement

Log in

Genetic landscape of pancreatic adenocarcinoma patients: a pilot study from Pakistan

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Pancreatic adenocarcinoma is one of the most aggressive malignancies with extremely low survival rate. Studies have shown that the exploration of key genes can provide a basis for targeted treatment of these patients. The genomic architecture of the Pakistani pancreatic adenocarcinoma patients remains unexplored. Keeping the scenario in place, the current study aims to analyse 88 cancer related genes in Pakistani pancreatic adenocarcinoma patients in order to elucidate candidate gene(s) for targeted molecular therapy.

Methods and results

A total 18 patients were included in the study initially and FFPE tumor samples were obtained. After confirmation of diagnosis and appropriate tumor content, DNA was extracted. Based on the quality and quantity of the extracted DNA, six pancreatic adenocarcinoma tumor samples were selected. Following to this, all the samples were subjected to targeted sequencing (Axen Cancer Panel 1). Variant detection was done and clinical significance of identified variants was assessed using ClinVar database. Targeted sequencing of tumor samples revealed a total of 29 alterations in the coding region of various genes. Among these five pathogenic variants were found in KRAS, BRCA1, TP53 and APC genes.

Conclusion

This is the first study that explores genes involved in pancreatic adenocarcinoma from the Pakistani population. Results obtained from the pilot study can guide us about the key genetic players in the Pakistani pancreatic adenocarcinoma population. This can lead to our better understanding of the molecular targeted therapies for these patients and designing future researches on larger sample size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA 71:209–249

    PubMed  Google Scholar 

  2. Kuehn BM (2020) Looking to long-term survivors for improved pancreatic cancer treatment. JAMA 324:2242–2244

    Article  PubMed  Google Scholar 

  3. Conroy T, Hammel P, Hebbar M, Ben Abdelghani M, Wei AC, Raoul JL et al (2018) Folfirinox or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med 379:2395–2406

    Article  CAS  PubMed  Google Scholar 

  4. Berlin JD, Feng Y, Catalano P, Abbruzzese JL, Philip PA, McWilliams RR et al (2018) An intergroup randomized phase II study of bevacizumab or Ccetuximab in combination with gemcitabine and in combination with chemoradiation in patients with resected pancreatic carcinoma: a trial of the ECOG-ACRIN cancer research group (E2204). Oncology 94:39–46

    Article  CAS  PubMed  Google Scholar 

  5. Ioka T, Okusaka T, Ohkawa S, Boku N, Sawaki A, Fujii Y et al (2015) Efficacy and safety of axitinib in combination with gemcitabine in advanced pancreatic cancer: subgroup analyses by region, including Japan, from the global randomized phase III trial. Jpn J Clin Oncol 45:439–448

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rougier P, Riess H, Manges R, Karasek P, Humblet Y, Barone C et al (2013) Randomised, placebo-controlled, double-blind, parallel-group phase III study evaluating aflibercept in patients receiving first-line treatment with gemcitabine for metastatic pancreatic cancer. Eur J Cancer 49:2633–2642

    Article  CAS  PubMed  Google Scholar 

  7. Mie T, Sasaki T, Takeda T, Okamoto T, Mori C, Furukawa T et al (2021) Treatment outcomes of erlotinib plus gemcitabine as late-line chemotherapy in unresectable pancreatic cancer. Jpn J Clin Oncol 51:1416

    Article  PubMed  Google Scholar 

  8. Waters AM, Der CJ (2018) KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb Perspect Med 8:a031435

    Article  PubMed  PubMed Central  Google Scholar 

  9. Connor AA, Denroche RE, Jang GH, Lemire M, Zhang A, Chan-Seng-Yue M et al (2019) Integration of genomic and transcriptional features in pancreatic cancer reveals increased cell cycle progression in metastases. Cancer Cell 35:267–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shen GQ, Aleassa EM, Walsh RM, Morris-Stiff G (2019) Next-generation sequencing in pancreatic cancer. Pancreas 48:739–748

    Article  PubMed  Google Scholar 

  11. Amundadottir LT (2016) Pancreatic cancer genetics. Int J Biol Sci 12:314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo S, Shi X, Shen J, Gao S, Wang H, Shen S et al (2020) Preoperative detection of KRAS G12D mutation in ctDNA is a powerful predictor for early recurrence of resectable PDAC patients. Br J Cancer 122:857–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee Y, Lee S, Sung JS, Chung HJ, Lim AR, Kim JW (2021) Clinical application of targeted deep sequencing in metastatic colorectal cancer patients: actionable genomic alteration in K-MASTER project. Cancer Res Treat 53:123

    Article  CAS  PubMed  Google Scholar 

  14. Han MR, Lee SH, Park JY, Hong H, Ho JY, Hur SY et al (2020) Clinical implications of circulating tumor DNA from ascites and serial plasma in ovarian cancer. Cancer Res Treat 52:779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee Y, Jeon JH, Goh SH, Roh H, Yun JY, Kwon NJ et al (2019) The clinical impact of family history of cancer in female never-smoker lung adenocarcinoma. Lung Cancer 136:15–22

    Article  PubMed  Google Scholar 

  16. Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S et al (2018) ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res 46:D1062–D1067

    Article  CAS  PubMed  Google Scholar 

  17. Landrum MJ, Chitipiralla S, Brown GR, Chen C, Gu B, Hart J et al (2020) ClinVar: improvements to accessing data. Nucleic Acids Res 48:D835–D844

    Article  CAS  PubMed  Google Scholar 

  18. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321:1801–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P et al (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518:495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Winkler EC, Wiemann S (2016) Findings made in gene panel to whole genome sequencing: data, knowledge, ethics–and consequences? Expert Rev Mol Diagn 16:1259–1270

    Article  CAS  PubMed  Google Scholar 

  21. Yachida S, White CM, Naito Y, Zhong Y, Brosnan JA, Macgregor-Das AM (2012) Clinical significance of the genetic landscape of pancreatic cancer and implications for identification of potential long-term survivors. Clin Cancer Res 18:6339–6347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schlitter AM, Segler A, Steiger K, Michalski CW, Jäger C, Konukiewitz B (2017) Molecular, morphological and survival analysis of 177 resected pancreatic ductal adenocarcinomas (PDACs): identification of prognostic subtypes. Sci Rep 7:1–2

    Article  Google Scholar 

  23. Nishiwada S, Sho M, Cui Y, Yamamura K, Akahori T, Nakagawa K (2021) A gene expression signature for predicting response to neoadjuvant chemoradiotherapy in pancreatic ductal adenocarcinoma. Int J Cancer 148:769–779

    Article  CAS  PubMed  Google Scholar 

  24. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531:47–52

    Article  CAS  PubMed  Google Scholar 

  25. Rosen MN, Goodwin RA, Vickers MM (2021) BRCA mutated pancreatic cancer: a change is coming. World J Gastroenterol 27:1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liede A, Malik IA, Aziz Z, De los Rios P, Kwan E, Narod SA (2002) Contribution of BRCA1 and BRCA2 mutations to breast and ovarian cancer in Pakistan. Am J Hum Genet 71:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rashid MU, Zaidi A, Torres D, Sultan F, Benner A, Naqvi B (2006) Prevalence of BRCA1 and BRCA2 mutations in Pakistani breast and ovarian cancer patients. Int J Cancer 119:2832–2839

    Article  CAS  PubMed  Google Scholar 

  28. Rashid MU, Muhammad N, Bajwa S, Faisal S, Tahseen M, Bermejo JL (2016) High prevalence and predominance of BRCA1 germline mutations in Pakistani triple-negative breast cancer patients. BMC Cancer 16:673

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rashid MU, Muhammad N, Naeemi H, Khan FA, Hassan M, Faisal S (2019) Spectrum and prevalence of BRCA1/2 germline mutations in Pakistani breast cancer patients: results from a large comprehensive study. Hered Cancer Clin Pract 17:1–13

    Article  CAS  Google Scholar 

  30. Fernandes GC, Michelli RA, Galvão HC, Paula AE, Pereira R, Andrade CE et al (2016) Prevalence of BRCA1/BRCA2 mutations in a Brazilian population sample at risk for hereditary breast cancer and characterization of its genetic ancestry. Oncotarget 7:80465

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lee JS, Oh S, Park SK, Lee MH, Lee JW, Kim SW et al (2018) Reclassification of BRCA1 and BRCA2 variants of uncertain significance: a multifactorial analysis of multicentre prospective cohort. J Med Genet 55:794–802

    Article  CAS  PubMed  Google Scholar 

  32. Zanella I, Merola F, Biasiotto G, Archetti S, Spinelli E, Di Lorenzo D (2017) Evaluation of the ion torrent PGM sequencing workflow for the routine rapid detection of BRCA1 and BRCA2 germline mutations. Exp Mol Pathol 102:314–320

    Article  CAS  PubMed  Google Scholar 

  33. Parsons MT, Tudini E, Li H, Hahnen E, Wappenschmidt B, Feliubadaló L et al (2019) Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: an ENIGMA resource to support clinical variant classification. Hum Mutat 40:1557–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zuntini R, Ferrari S, Bonora E, Buscherini F, Bertonazzi B, Grippa M et al (2018) Dealing with BRCA1/2 unclassified variants in a cancer genetics clinic: does cosegregation analysis help? Front Genet 9:378

    Article  PubMed  PubMed Central  Google Scholar 

  35. Pesaran T, Karam R, Huether R, Li S, Farber-Katz S, Chamberlin A et al (2016) Beyond DNA: an integrated and functional approach for classifying germline variants in breast cancer genes. Int J Breast Cancer 2016:2469523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Borun P, Kubaszewski L, Banasiewicz T, Walkowiak J, Skrzypczak-Zielinska M, Kaczmarek-Rys M et al (2014) Comparative-high resolution melting: a novel method of simultaneous screening for small mutations and copy number variations. Hum Genet 133:535–545

    Article  CAS  PubMed  Google Scholar 

  37. De Lellis L, Aceto GM, Curia MC, Catalano T, Mammarella S, Veschi S et al (2013) Integrative analysis of hereditary nonpolyposis colorectal cancer: the contribution of allele-specific expression and other assays to diagnostic algorithms. PLoS ONE 8:e81194

    Article  PubMed  PubMed Central  Google Scholar 

  38. Obul J, Itoga S, Abliz M, Sato K, Ishige T, Utsuno E et al (2012) High-resolution melting analyses for gene scanning of APC, MLH1, MSH2, and MSH6 associated with hereditary colorectal cancer. Genet Test Mol Biomarkers 16:406–411

    Article  CAS  PubMed  Google Scholar 

  39. Juanes M (2020) Cytoskeletal control and wnt signaling—APC’s dual contributions in stem cell division and colorectal cancer. Cancers 12:3811

    Article  PubMed Central  Google Scholar 

  40. Bournet B, Muscari F, Buscail C, Assenat E, Barthet M, Hammel P (2016) KRAS G12D mutation subtype is a prognostic factor for advanced pancreatic adenocarcinoma. Clin Transl Gastroenterol 7:e157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han CW, Jeong MS, Jang SB (2021) Understand KRAS and the quest for anti-cancer drugs. Cells 10:842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Al-Qasem AJ, Toulimat M, Eldali AM, Tulbah A, Al-Yousef N, Al-Daihan SK et al (2011) TP53 genetic alterations in Arab breast cancer patients: novel mutations, pattern and distribution. Oncol Lett 2:363–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gillet E, Alentorn A, Doukouré B, Mundwiller E, van Thuij H, Reijneveld JC et al (2014) TP53 and p53 statuses and their clinical impact in diffuse low grade gliomas. J Neurooncol 118:131–139

    CAS  PubMed  Google Scholar 

  44. Neyaz A, Husain N, Gupta S, Kumari S, Arora A, Awasthi NP et al (2018) Investigation of targetable predictive and prognostic markers in gallbladder carcinoma. J Gastrointest Oncol 9:111

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dutta S, Pregartner G, Rücker FG, Heitzer E, Zebisch A, Bullinger L et al (2020) Functional classification of TP53 mutations in acute myeloid leukemia. Cancers 12:637

    Article  CAS  PubMed Central  Google Scholar 

  46. Liu Q, Tong D, Liu G, Yi Y, Xu J, Yang X et al (2018) A novel BRCA2 mutation in prostate cancer sensitive to combined radiotherapy and androgen deprivation therapy. Cancer Biol Ther 19:669–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu Y, Zhang Y, Hua W, Li Z, Wu B, Liu W (2019) Clinical and molecular characteristics of thalamic gliomas: retrospective report of 26 cases. World Neurosurg 126:e1169-1182

    Article  PubMed  Google Scholar 

  48. Zhou Y, Guo D, Zhang Y (2020) Association of microRNA-21 with p53 at mutant sites R175H and R248Q, clinicopathological features, and prognosis of NSCLC. Mol Ther Oncolytics 19:208–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Alsner J, Yilmaz M, Guldberg P, Hansen LL, Overgaard J (2000) Heterogeneity in the clinical phenotype of TP53 mutations in breast cancer patients. Clin Cancer Res 6:3923–3931

    CAS  PubMed  Google Scholar 

  50. Donehower LA, Soussi T, Korkut A, Liu Y, Schultz A, Cardenas M et al (2019) Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas. Cell Rep 28:1370–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Food and Drugs Administration USA (2021) http://www.fda.gov. Accessed 12 Oct 2021

  52. Tamai T, Kaneko M, Narukawa M (2021) Comparison of efficacy outcomes of anticancer drugs between Japanese patients and the overall population. Int Journal Clin Oncol 26:296–304

    Article  Google Scholar 

Download references

Funding

The study was funded by University Research Council, Aga Khan University Hospital (183027SUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Adnan Ali.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Institutional Ethical Review Committee of Aga Khan University Hospital (2020-2101-8768).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Supplementary file2 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.M., Adnan, Y., Ahmad, Z. et al. Genetic landscape of pancreatic adenocarcinoma patients: a pilot study from Pakistan. Mol Biol Rep 49, 1341–1350 (2022). https://doi.org/10.1007/s11033-021-06964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06964-z

Keywords

Navigation