Skip to main content
Log in

Epigenetic regulation of salinity stress responses in cereals

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cereals are important crops and are exposed to various types of environmental stresses that affect the overall growth and yield. Among the various abiotic stresses, salt stress is a major environmental factor that influences the genetic, physiological, and biochemical responses of cereal crops. Epigenetic regulation which includes DNA methylation, histone modification, and chromatin remodelling plays an important role in salt stress tolerance. Recent studies in rice genomics have highlighted that the epigenetic changes are heritable and therefore can be considered as molecular signatures. An epigenetic mechanism under salinity induces phenotypic responses involving modulations in gene expression. Association between histone modification and altered DNA methylation patterns and differential gene expression has been evidenced for salt sensitivity in rice and other cereal crops. In addition, epigenetics also creates stress memory that helps the plant to better combat future stress exposure. In the present review, we have discussed epigenetic influences in stress tolerance, adaptation, and evolution processes. Understanding the epigenetic regulation of salinity could help for designing salt-tolerant varieties leading to improved crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shewry PR, Sandra JH (2015) The contribution of wheat to human diet and health. Food Energy Secur 4(3):178–202. https://doi.org/10.1002/fes3.64

    Article  PubMed  PubMed Central  Google Scholar 

  2. Panta S, Flowers T, Lane P, Doyle R, Haros G, Shabala S (2014) Halophyte agriculture: success stories. Environ Exp Bot 107:71–83. https://doi.org/10.1016/j.envexpbot.2014.05.006

    Article  Google Scholar 

  3. Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787. https://doi.org/10.3389/fpls.2016.01787

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zörb C, Geilfus CM, Dietz KJ (2019) Salinity and crop yield. Plant Biol 21:31–38. https://doi.org/10.1111/plb.12884

    Article  CAS  PubMed  Google Scholar 

  5. Adem GD, Roy SJ, Zhou M, Bowman JP, Shabala S (2014) Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biol 14(1):1–13. https://doi.org/10.1186/1471-2229-14-113

    Article  CAS  Google Scholar 

  6. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  CAS  PubMed  Google Scholar 

  7. Soda N, Sharan A, Gupta BK, Singla-Pareek SL, Pareek A (2016) Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance. Sci Rep 6:34762. https://doi.org/10.1038/srep34762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kumar S, Beena AS, Awana M, Singh A (2017) Physiological, biochemical, epigenetic and molecular analyses of wheat (Triticumaestivum) genotypes with contrasting salt tolerance. Front Plant Sci 8:1151. https://doi.org/10.3389/fpls.2017.01151

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhu H, Wang G, Qian J (2016) Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet 17(9):551–565. https://doi.org/10.1038/nrg.2016.83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rus A, Yokoi S, Sharkhuu A, Reddy M, Lee BH, Matsumoto TK et al (2001) AtHKT1 is a salt tolerance determinant that controls Na entry into plant roots. Proc Natl Acad Sci USA 98:14150–14155. https://doi.org/10.1073/pnas.241501798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suprasanna P (2020) Plant abiotic stress tolerance: insights into resilience build-up. J Biosci 45:120. https://doi.org/10.1007/s12038-020-00088-5

    Article  PubMed  Google Scholar 

  12. Iwasaki M, Paszkowski J (2014) Epigenetic memory in plants. EMBO J 33(18):1987–1998. https://doi.org/10.15252/embj.201488883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thiebaut F, Hemerly AS, Ferreira PCG (2019) A role for epigenetic regulation in the adaptation and stress responses of non-model plants. Front Plant Sci 10:246. https://doi.org/10.3389/fpls.2019.00246

    Article  PubMed  PubMed Central  Google Scholar 

  14. Friedrich T, Faivre L, Bäurle I, Schubert D (2019) Chromatin-based mechanisms of temperature memory in plants. Plant Cell Environ 42:762–770. https://doi.org/10.1111/pce.13373

    Article  CAS  PubMed  Google Scholar 

  15. Duan CG, Zhu JK, Cao X (2018) Retrospective and perspective of plant epigenetics in China. J Genet Genomics 45(11):621–638. https://doi.org/10.1016/j.jgg.2018.09.004

    Article  PubMed  Google Scholar 

  16. Pikaard CS, Scheid OM (2014) Epigenetic regulation in plants. CSH Perspect Biol 6(12):a019315. https://doi.org/10.1101/cshperspect.a019315

    Article  CAS  Google Scholar 

  17. Duan H, Li J, Zhu Y, Jia W, Wang H, Jiang L, Zhou Y (2020) Responsive changes of DNA methylation in wheat (Triticum aestivum) under water deficit. Sci Rep 10(1):1–8. https://doi.org/10.1038/s41598-020-64660-7

    Article  CAS  Google Scholar 

  18. Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ibarra JR et al (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1005566. https://doi.org/10.1371/journal.pgen.1004915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paul A, Dasgupta P, Roy D, Chaudhuri S (2017) Comparative analysis of Histone modifications and DNA methylation at OsBZ8 locus under salinity stress in IR64 and Nonabokra rice varieties. Plant Mol Biol 95(1):63–88. https://doi.org/10.1007/s11103-017-0636-2

    Article  CAS  PubMed  Google Scholar 

  20. Pandey G, Yadav CB, Sahu PP, Muthamilarasan M, Prasad M (2017) Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setariaitalica L.). Plant Cell Rep 36(5):759–772. https://doi.org/10.1007/s00299-016-2093-9

    Article  CAS  PubMed  Google Scholar 

  21. Wang W, Zhao X, Pan Y, Zhu L, Fu B, Li Z (2011) DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress. J Genet Genomics 38(9):419–424. https://doi.org/10.1016/j.jgg.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  22. Zhong L, Xu YH, Wang JB (2009) DNA-methylation changes induced by salt stress in wheat Triticum aestivum. Afr J Biotech 8:6201–6207. https://doi.org/10.5897/AJB09.1058

    Article  CAS  Google Scholar 

  23. Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou DX, Yang W, Zhao Y (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156. https://doi.org/10.1016/j.plantsci.2015.03.023

    Article  CAS  PubMed  Google Scholar 

  24. Karan R, DeLeon T, Biradar H, Subudhi PK (2012) Salt stress induced variation in DNA methylation pattern and its influence on gene expression in contrasting rice genotypes. PLoS ONE 7(6):e40203. https://doi.org/10.1371/journal.pone.0040203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ferreira LJ, Donoghue MT, Barros P, Saibo NJ, Santos AP, Oliveira MM (2019) Uncovering differentially methylated regions (DMRs) in a salt-tolerant rice variety under stress: one step towards new regulatory regions for enhanced salt tolerance. Epigenomes 3(1):4. https://doi.org/10.3390/epigenomes3010004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Garg R, Chevala VN, Shankar R, Jain M (2015) Divergent DNA methylation patterns associated with gene expression in rice cultivars with contrasting drought and salinity stress response. Sci Rep 5(1):1–16. https://doi.org/10.1038/srep14922

    Article  CAS  Google Scholar 

  27. Wang W, Huang F, Qin Q et al (2015) Comparative analysis of DNA methylation changes in two rice genotypes under salt stress and subsequent recovery. Biochem Biophys Res Commun 465:790–796. https://doi.org/10.1016/j.bbrc.2015.08.089

    Article  CAS  PubMed  Google Scholar 

  28. Bocchini M, D’Amato R, Ciancaleoni S, Fontanella MC, Palmerini CA, Beone GM et al (2018) Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing a higher drought tolerance. Front Plant Sci 9:389

    Article  PubMed  PubMed Central  Google Scholar 

  29. Migicovsky Z, Yao Y, Kovalchuk I (2014) Transgenerational phenotypic and epigenetic changes in response to heat stress in Arabidopsis thaliana. Plant Signal Behav 9(2):e27971. https://doi.org/10.4161/psb.27971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cong W, Miao Y, Xu L, Zhang Y, Yuan C, Wang J et al (2019) Transgenerational memory of gene expression changes induced by heavy metal stress in rice (Oryzasativa L.). BMC Plant Biol 19(1):1–14. https://doi.org/10.1186/s12870-019-1887-7

    Article  CAS  Google Scholar 

  31. Dezar CA, Giacomelli JI, Manavella PA, Ré DA, Alves-Ferreira M, Baldwin IT et al (2011) HAHB10, a sunflower HD-Zip II transcription factor, participates in the induction of flowering and in the control of phytohormone-mediated responses to biotic stress. J Exp Bot 62(3):1061–1076. https://doi.org/10.1093/jxb/erq339

    Article  CAS  PubMed  Google Scholar 

  32. Zheng Y, Ding Y, Sun X et al (2016) Histone deacetylase HDA9 negatively regulates salt and drought stress responsiveness in Arabidopsis. J Exp Bot 67:1703–1713. https://doi.org/10.1093/jxb/erv562

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Zhi P, Wang X, Fan Q, Chang C (2019) Wheat WD40-repeat protein TaHOS15 functions in a histone deacetylase complex to fine-tune defense responses to Blumeriagraminis f. sp. tritici. J Exp Bot 70(1):255–268. https://doi.org/10.1093/jxb/ery330

    Article  CAS  PubMed  Google Scholar 

  34. Liu JG, Han X, Yang T, Cui WH, Wu AM, Fu CX et al (2019) Genome-wide transcriptional adaptation to salt stress in populus. BMC Plant Biol 19(1):1–14. https://doi.org/10.1186/s12870-019-1952-2

    Article  CAS  Google Scholar 

  35. Cicatelli A, Todeschini V, Lingua G, Biondi S, Torrigiani P, Castiglione S (2014) Epigenetic control of heavy metal stress response in mycorrhizal versus non-mycorrhizal poplar plants. Env Sci Pollut Res 21(3):1723–1737. https://doi.org/10.1007/s11356-013-2072-4

    Article  CAS  Google Scholar 

  36. Neves DM, da Hora Almeida LA, Santana-Vieira DDS, Freschi L, Ferreira CF, dos Santos SoaresFilho W et al (2017) Recurrent water deficit causes epigenetic and hormonal changes in citrus plants. Sci Rep 7(1):1–11. https://doi.org/10.1038/s41598-017-14161-x

    Article  CAS  Google Scholar 

  37. González RM, Ricardi MM, Iusem ND (2013) Epigenetic marks in an adaptive water stress-responsive gene in tomato roots under normal and drought conditions. Epigenetics 8(8):864–872. https://doi.org/10.4161/epi.25524

    Article  PubMed  PubMed Central  Google Scholar 

  38. Fan SK, Ye JY, Zhang LL, Chen HS, Zhang HH, Zhu YX et al (2020) Inhibition of DNA demethylation enhances plant tolerance to cadmium toxicity by improving iron nutrition. Plant Cell Env 43(1):275–291. https://doi.org/10.1111/pce.13670

    Article  CAS  Google Scholar 

  39. Bharti P, Mahajan M, Vishwakarma AK, Bhardwaj J, Yadav SK (2015) AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco. J Exp Bot 66(19):5959–5969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Verkest A, Byzova M, Martens C, Willems P, Verwulgen T, Slabbinck B et al (2015) Selection for improved energy use efficiency and drought tolerance in canola results in distinct transcriptome and epigenome changes. Plant Physiol 168(4):1338–1350. https://doi.org/10.1104/pp.15.00155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang H, Lang Z, Zhu JK (2018) Dynamics and function of DNA methylation in plants. Nat Rev Mol Cell Biol 19(8):489–506. https://doi.org/10.1038/s41580-018-0016-z

    Article  CAS  PubMed  Google Scholar 

  42. Kim JH (2019) Chromatin remodeling and epigenetic regulation in plant DNA damage repair. Int J Mol Sci 20(17):4093. https://doi.org/10.3390/ijms20174093

    Article  CAS  PubMed Central  Google Scholar 

  43. Vergara Z, Gutierrez C (2017) Emerging roles of chromatin in the maintenance of genome organization and function in plants. Genome Biol 18(1):1–12. https://doi.org/10.1186/s13059-017-1236-9

    Article  CAS  Google Scholar 

  44. Simon SA, Meyers BC (2011) Small RNA-mediated epigenetic modifications in plants. Curr Opin Plant Biol 14(2):148–155. https://doi.org/10.1016/j.pbi.2010.11.007

    Article  CAS  PubMed  Google Scholar 

  45. He XJ, Chen T, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21(3):442–465. https://doi.org/10.1038/cr.2011.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11(9):607–620. https://doi.org/10.1038/nrm2950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang H, Zhu JK (2012) Active DNA demethylation in plants and animals. CSH Symp Quant Biol 77:161–173. https://doi.org/10.1101/sqb.2012.77.014936

    Article  CAS  Google Scholar 

  48. Liu S, Dunwell TL, Pfeifer GP, Dunwell JM, Ullah I, Wang Y (2013) Detection of oxidation products of 5-methyl-2′-deoxycytidine in Arabidopsis DNA. PLoS ONE 8(12):e84620. https://doi.org/10.1371/journal.pone.0084620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhou C, Wang C, Liu H, Zhou Q, Liu Q, Guo Y, Peng T, Song J, Zhang J, Chen L, Zhao Y (2018) Identification and analysis of adenine N 6-methylation sites in the rice genome. Nat Plants 4(8):554–563. https://doi.org/10.1038/s41477-018-0214-x

    Article  CAS  PubMed  Google Scholar 

  50. Matzke MA, Mosher RA (2014) RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet 15(6):394–408. https://doi.org/10.1038/nrg3683

    Article  CAS  PubMed  Google Scholar 

  51. Watanabe T, Tomizawa SI, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S, Iida N, Hoki Y, Murphy PJ, Toyoda A, Gotoh K (2011) Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science 332(6031):848–852. https://doi.org/10.1126/science.1203919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karanthamalai J, Chodon A, Chauhan S, Pandi G (2020) DNA N6-Methyladenine modification in plant genomes—a glimpse into emerging epigenetic code. Plants 9:247. https://doi.org/10.3390/plants9020247

    Article  CAS  PubMed Central  Google Scholar 

  53. Halter T, Wang J, Amesefe D, Lastrucci E, Charvin M, Rastogi MS, Navarro L (2021) The Arabidopsis active demethylase ROS1 cis-regulates defence genes by erasing DNA methylation at promoter-regulatory regions. Elife 10:e62994. https://doi.org/10.7554/eLife.62994.sa2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Villagómez-Aranda AL, García-Ortega LF, Torres-Pacheco I, Guevara-González RG (2021) Whole-genome DNA methylation analysis in hydrogen peroxide overproducing transgenic tobacco resistant to biotic and abiotic stresses. Plants 10(1):178. https://doi.org/10.3390/plants10010178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xin C, Chi J, Zhao Y, He Y, Guo J (2019) Cadmium stress alters cytosine methylation status and expression of a select set of genes in Nicotiana benthamiana. Plant Sci 284:16–24. https://doi.org/10.1016/j.plantsci.2019.03.021

    Article  CAS  PubMed  Google Scholar 

  56. Zhou M, Sng NJ, Le Frois C, Paul AL, Ferl RJ (2019) Epigenomics in an extraterrestrial environment: organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genom 20:205. https://doi.org/10.1186/s12864-019-5554-z

    Article  Google Scholar 

  57. Wibowo A, Becker C, Marconi G, Durr J, Price J, Hagmann J, Papareddy R, Putra H, Kageyama J, Weigel D (2016) Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. Elife 5:e13546. https://doi.org/10.7554/eLife.13546.001

    Article  PubMed  PubMed Central  Google Scholar 

  58. Liu J, He Z (2020) Small DNA methylation, big player in plant abiotic stress responses and memory. Front Plant Sci 1011:595603. https://doi.org/10.3389/fpls.2020.595603

    Article  Google Scholar 

  59. Ma Y, Min L, Wang M, Wang C, Zhao Y, Li Y et al (2018) Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence. Plant Cell 30:1387–1403. https://doi.org/10.1105/tpc.18.00074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo H, Wu T, Li S, He Q, Yang Z, Zhang W, Gan Y, Sun P, Xiang G, Zhang H, Deng H (2019) The methylation patterns and transcriptional responses to chilling stress at the seedling stage in rice. Int J Mol Sci 20(20):5089. https://doi.org/10.3390/ijms20205089

    Article  CAS  PubMed Central  Google Scholar 

  61. Min L, Li Y, Hu Q, Zhu L, Gao W, Wu Y et al (2014) Sugar and auxin signaling pathways respond to high-temperature stress during anther development as revealed by transcript profiling analysis in cotton. Plant Physiol 164:1293–1308. https://doi.org/10.1104/pp.113.232314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chachar S, Liu J, Zhang P, Riaz A, Guan C, Liu S (2021) Harnessing current knowledge of DNA N6-methyladenosine from model plants for non-model crops. Front Genet 12:668317. https://doi.org/10.3389/fgene.2021.668317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen Q, Chen X, Wang Q, Zhang F, Lou Z, Zhang Q, Zhou DX (2013) Structural basis of a histone H3 lysine 4 demethylase required for stem elongation in rice. PLoS Genet 9(1):e1003239. https://doi.org/10.1371/journal.pgen.1003239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cui X, Jin P, Cui X, Gu L, Lu Z, Xue Y, Wei L, Qi J, Song X, Luo M, An G, Cao X (2013) Control of transposon activity by a histone H3K4 demethylase in rice. Proc Natl Acad Sci USA 110(5):1953–1958. https://doi.org/10.1073/pnas.1217020110

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hou Y, Wang L, Wang L, Liu L, Li L, Sun L, Rao Q, Zhang J, Huang S (2015) JMJ704 positively regulates rice defense response against Xanthomonasoryzae pv. oryzae infection via reducing H3K4me2/3 associated with negative disease resistance regulators. BMC Plant Biol 15(1):286. https://doi.org/10.1186/s12870-015-0674-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu K, Yu Y, Dong A, Shen WH (2017) SET DOMAIN GROUP701 encodes a H3K4-methytransferase and regulates multiple key processes of rice plant development. New Phytol 215(2):609–623. https://doi.org/10.1111/nph.14596

    Article  CAS  PubMed  Google Scholar 

  67. Yokoo T, Saito H, Yoshitake Y, Xu Q, Asami T, Tsukiyama T, Teraishi M, Okumoto Y, Tanisaka T (2014) Se14, encoding a JmjC domain-containing protein, plays key roles in long-day suppression of rice flowering through the demethylation of H3K4me3 of RFT1. PLoS ONE 9(4):e96064. https://doi.org/10.1371/journal.pone.0096064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kong L, Liu Y, Wang X, Chang C (2020) Insight into the role of epigenetic processes in abiotic and biotic stress response in wheat and barley. Int J Mol Sci 21(4):1480. https://doi.org/10.3390/ijms21041480

    Article  CAS  PubMed Central  Google Scholar 

  69. Wang M, Qin L, Xie C, Li W, Yuan J, Kong L, Yu W, Xia G, Liu S (2014) Induced and constitutive DNA methylation in a salinity-tolerant wheat introgression line. Plant Cell Physiol 55(7):1354–1365. https://doi.org/10.1093/pcp/pcu059

    Article  CAS  PubMed  Google Scholar 

  70. Rajkumar MS, Shankar R, Garg R, Jain M (2019) Role of DNA methylation dynamics in desiccation and salinity stress responses in rice cultivars. BioRxiv. https://doi.org/10.1101/558064

    Article  Google Scholar 

  71. Harris CJ, Scheibe M, Wongpalee SP, Liu W, Cornett EM et al (2018) A DNA methylation reader complex that enhances gene transcription. Science 362(6419):1182–1186. https://doi.org/10.1126/science.aar7854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xiao X, Zhang J, Li T, Fu X, Satheesh V, Niu Q et al (2019) A group of SUVH methyl-DNA binding proteins regulate expression of the DNA demethylase ROS1 in Arabidopsis. J Integr Plant Biol 61(2):110–119. https://doi.org/10.1111/jipb.12768

    Article  CAS  PubMed  Google Scholar 

  73. Singroha G, Sharma P (2019) Epigenetic modifications in plants under abiotic stress. In: Meccariello R (ed) Epigenetics. Intechopen, London

    Google Scholar 

  74. Bartels A, Han Q, Nair P, Stacey L, Gaynier H, Mosley M, Huang QQ, Pearson JK, Hsieh TF, An YQC, Xiao W (2018) Dynamic DNA methylation in plant growth and development. Int J Mol Sci 19(7):2144. https://doi.org/10.3390/ijms19072144

    Article  CAS  PubMed Central  Google Scholar 

  75. Shen Y, Conde e Silva N, Audonnet L, Servet C, Wei W, Zhou DX (2014) Over-expression of histone H3K4 demethylase gene JMJ15 enhances salt tolerance in Arabidopsis. Front Plant Sci 5:290. https://doi.org/10.3389/fpls.2014.00290

    Article  PubMed  PubMed Central  Google Scholar 

  76. Ganguly DR, Crisp PA, Eichten SR, Pogson BJ (2017) The Arabidopsis DNA methylome is stable under transgenerational drought stress. Plant Physiol 175(4):1893–1912. https://doi.org/10.1104/pp.17.00744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bräutigam K, Cronk Q (2018) DNA methylation and the evolution of developmental complexity in plants. Front Plant Sci 9:1447. https://doi.org/10.3389/fpls.2018.01447

    Article  PubMed  PubMed Central  Google Scholar 

  78. Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17(8):487–500. https://doi.org/10.1038/nrg.2016.59

    Article  CAS  PubMed  Google Scholar 

  79. Chang YN, Zhu C, Jiang J, Zhang H, Zhu JK, Duan CG (2020) Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol 62(5):563–580. https://doi.org/10.1111/jipb.12901

    Article  CAS  PubMed  Google Scholar 

  80. Eichten SR, Schmitz RJ, Springer NM (2014) Epigenetics: beyond chromatin modifications and complex genetic regulation. Plant Physiol 165(3):933–947. https://doi.org/10.1104/pp.113.234211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kouzarides T (2007) Chromatin modifications and their function. Cell 128(4):693–705. https://doi.org/10.1016/j.cell.2007.02.005

    Article  CAS  PubMed  Google Scholar 

  82. Asensi-Fabado MA, Amtmann A, Perrella G (1860) Plant responses to abiotic stress: the chromatin context of transcriptional regulation. Biochim Biophys Acta Gene Regul Mech 1:106–122. https://doi.org/10.1016/j.bbagrm.2016.07.015

    Article  CAS  Google Scholar 

  83. Luo M, Cheng K, Xu Y, Yang S, Wu K (2017) Plant responses to abiotic stress regulated by histone deacetylases. Front Plant Sci 8:2147. https://doi.org/10.3389/fpls.2017.02147

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ueda M, Seki M (2020) Histone modifications form epigenetic regulatory networks to regulate abiotic stress response. Plant Physiol 182(1):15. https://doi.org/10.1104/pp.19.00988

    Article  CAS  PubMed  Google Scholar 

  85. Xu Y, Zhang S, Lin S, Guo Y, Deng W, Zhang Y, Xue Y (2017) WERAM: a database of writers, erasers and readers of histone acetylation and methylation in eukaryotes. Nucleic Acids Res 45(D1):D264–D270. https://doi.org/10.1093/nar/gkw1011

    Article  CAS  PubMed  Google Scholar 

  86. Cheng X, Zhang S, Tao W, Zhang X, Liu J, Sun J, Zhang H, Pu L, Huang R, Chen T (2018) INDETERMINATE SPIKELET1 recruits histone deacetylase and a transcriptional repression complex to regulate rice salt tolerance. Plant Physiol 178(2):824–837. https://doi.org/10.1104/pp.18.00324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lee HG, Seo PJ (2019) MYB96 recruits the HDA15 protein to suppress negative regulators of ABA signaling in Arabidopsis. Nat Commun 10(1):1–14. https://doi.org/10.1038/s41467-019-09417-1

    Article  CAS  Google Scholar 

  88. Ma S, Tang N, Li X, Xie Y, Xiang D, Fu J, Shen J, Yang J, Tu H, Li X, Hu H (2019) Reversible histone H2B monoubiquitination fine-tunes abscisic acid signaling and drought response in rice. Mol Plant 12(2):263–277. https://doi.org/10.1016/j.molp.2018.12.005

    Article  CAS  PubMed  Google Scholar 

  89. Hu Z, Song N, Zheng M et al (2015) Histone acetyltransferase GCN5 is essential for heat stress-responsive gene activation and thermotolerance in Arabidopsis. Plant J 84:1178–1191. https://doi.org/10.1111/tpj.13076

    Article  CAS  PubMed  Google Scholar 

  90. Zheng M, Liu X, Lin J, Liu X, Wang Z, Xin M, Yao Y, Peng H, Zhou DX, Ni Z, Sun Q, Hu Z (2019) Histone acetyltransferase GCN 5 contributes to cell wall integrity and salt stress tolerance by altering the expression of cellulose synthesis genes. Plant J 97(3):587–602. https://doi.org/10.1111/tpj.14144

    Article  CAS  PubMed  Google Scholar 

  91. Bilichak A, Ilnystkyy Y, Hollunder J, Kovalchuk I (2012) The progeny of Arabidopsis thaliana plants exposed to salt exhibit changes in DNA methylation, histone modifications and gene expression. PLoS ONE 7(1):e30515. https://doi.org/10.1371/journal.pone.0030515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sharma C, Kumar S, Saripalli G, Jain N, Raghuvanshi S, Sharma JB, Prabhu KV, Sharma PK, Gupta PK (2019) H3K4/K9 acetylation and Lr28-mediated expression of six leaf rust responsive genes in wheat (Triticum aestivum). Mol Genet Genom 294(1):227–241. https://doi.org/10.1007/s00438-018-1500-z

    Article  CAS  Google Scholar 

  93. Eom SH, Hyun TK (2018) Histone acetyltransferases (HATs) in Chinese cabbage: insights from histone H3 acetylation and expression profiling of HATs in response to abiotic stresses. J Am Soc Hortic Sci 143:296–303. https://doi.org/10.21273/JASHS04436-18

    Article  CAS  Google Scholar 

  94. Li H, Yan S, Zhao L et al (2014) Histone acetylation associated up-regulation of the cell wall related genes is involved in salt stress induced maize root swelling. BMC Plant Biol 14:1–14. https://doi.org/10.1186/1471-2229-14-105

    Article  CAS  Google Scholar 

  95. Wang T, Xing J, Liu Z et al (2019) Histone acetyltransferase GCN5-mediated regulation of long non-coding RNA At4 contributes to phosphate starvation response in Arabidopsis. J Exp Bot 70:6337–6348. https://doi.org/10.1093/jxb/erz359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Fang H, Liu X, Thorn G et al (2014) Expression analysis of histone acetyltransferases in rice under drought stress. Biochem Biophys Res Commun 443:400–405. https://doi.org/10.1016/j.bbrc.2013.11.102

    Article  CAS  PubMed  Google Scholar 

  97. Zhao J, Zhang J, Zhang W, Wu K, Zheng F, Tian L, Liu X, Duan J (2015) Expression and functional analysis of the plant-specific histone deacetylase HDT701 in rice. Front Plant Sci 5:764. https://doi.org/10.3389/fpls.2014.00764

    Article  PubMed  PubMed Central  Google Scholar 

  98. Ojolo SP, Cao S, Priyadarshani SVGN, Li W, Yan M, Aslam M, Zhao H, Qin Y (2018) Regulation of plant growth and development: a review from a chromatin remodeling perspective. Front Plant Sci 9:1232. https://doi.org/10.3389/fpls.2018.01232

    Article  PubMed  PubMed Central  Google Scholar 

  99. Raxwal VK, Ghosh S, Singh S, Agarwal SK, Goel S, Jagannath A et al (2020) Abiotic stress-mediated modulation of the chromatin landscape in Arabidopsis thaliana. J Exp Bot 71:5280–5293. https://doi.org/10.1093/jxb/eraa286

    Article  CAS  PubMed  Google Scholar 

  100. Han SK, Wu MF, Cui S, Wagner D (2015) Roles and activities of chromatin remodeling ATPases in plants. Plant J 83(1):62–77. https://doi.org/10.1111/tpj.12877

    Article  CAS  PubMed  Google Scholar 

  101. Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. https://doi.org/10.1146/annurev.biochem.77.062706.153223

    Article  CAS  PubMed  Google Scholar 

  102. Hargreaves DC, Crabtree GR (2011) ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21(3):396–420. https://doi.org/10.1038/cr.2011.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719. https://doi.org/10.1016/j.cell.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  104. Peterson CL, Dingwall A, Scott MP (1994) Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement. Proc Natl Acad Sci USA 91(8):2905–2908. https://doi.org/10.1073/pnas.91.8.2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sang Y, Silva-Ortega CO, Wu S, Yamaguchi N, Wu MF, Pfluger J, Gillmor CS, Gallahar KL, Wagner D (2012) Mutations in two non-canonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects. Plant J 72(6):1000–1014. https://doi.org/10.1111/tpj.12009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Corona DF, Tamkun JW (2004) Multiple roles for ISWI in transcription, chromosome organization and DNA replication. Biochim Biophys Acta Gene Struc Expres 1677(1–3):113–119. https://doi.org/10.1016/j.bbaexp.2003.09.018

    Article  CAS  Google Scholar 

  107. Ebbert R, Birkmann A, Schüller HJ (1999) The product of the SNF2/SWI2 paralogue INO80 of Saccharomyces cerevisiae required for efficient expression of various yeast structural genes is part of a high-molecular-weight protein complex. Mol Microbiol 32(4):741–751. https://doi.org/10.1046/j.1365-2958.1999.01390.x

    Article  CAS  PubMed  Google Scholar 

  108. Berriri S, Gangappa SN, Kumar SV (2016) SWR1 chromatin-remodeling complex subunits and H2A. Z have non-overlapping functions in immunity and gene regulation in Arabidopsis. Mol Plant 9(7):1051–1065. https://doi.org/10.1016/j.molp.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  109. Fritsch O, Benvenuto G, Bowler C, Molinier J, Hohn B (2004) The INO80 protein controls homologous recombination in Arabidopsis thaliana. Mol Cell 16(3):479–485. https://doi.org/10.1016/j.molcel.2004.09.034

    Article  CAS  PubMed  Google Scholar 

  110. Brzezinka K, Altmann S, Czesnick H, Nicolas P, Gorka M, Benke E, Kabelitz T, Jähne F, Graf A, Kappel C, Bäurle I (2016) Arabidopsis FORGETTER1 mediates stress-induced chromatin memory through nucleosome remodeling. Elife 5:e17061. https://doi.org/10.7554/eLife.17061

    Article  PubMed  PubMed Central  Google Scholar 

  111. Song ZT, Liu JX, Han JJ (2021) Chromatin remodeling factors regulate environmental stress responses in plants. J Integr Plant Biol 63(3):438–450. https://doi.org/10.1111/jipb.13064

    Article  CAS  PubMed  Google Scholar 

  112. Han SK, Sang Y, Rodrigues A, Wu MF, Rodriguez PL, Wagner D, Biol F (2012) The SWI2/SNF2 chromatin remodeling ATPase BRAHMA represses abscisic acid responses in the absence of the stress stimulus in Arabidopsis. Plant Cell 24:4892–4906. https://doi.org/10.1105/tpc.112.105114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Peirats-Llobet M, Han SK, Gonzalez-Guzman M, Jeong CW, Rodriguez L, Belda-Palazon B, Wagner D, Rodriguez PL (2015) A direct link between abscisic acid sensing and the chromatin-remodeling ATPase BRAHMA via core ABA signaling pathway components. Mol Plant 9:136–147. https://doi.org/10.1016/j.molp.2015.10.003

    Article  CAS  PubMed  Google Scholar 

  114. Yu X, Meng X, Liu Y, Wang X, Wang TJ, Zhang A, Li N, Qi X, Liu B, Xu ZY (2019) The chromatin remodeler ZmCHB101 impacts alternative splicing contexts in response to osmotic stress. Plant Cell Rep 38:131–145. https://doi.org/10.1007/s00299-018-2354-x

    Article  CAS  PubMed  Google Scholar 

  115. Kim DH, Rossi JJ (2008) RNAi mechanisms and applications. Biotechniques 44(5):613–616. https://doi.org/10.2144/000112792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Duempelmann L, Skribbe M, Bühler M (2020) Small RNAs in the transgenerational inheritance of epigenetic information. Trends Genet 36(3):203–214. https://doi.org/10.1016/j.tig.2019.12.001

    Article  CAS  PubMed  Google Scholar 

  117. Axtell MJ, Westholm JO, Lai EC (2011) Vive la différence: biogenesis and evolution of microRNAs in plants and animals. Genome Biol 12(4):1–13. https://doi.org/10.1186/gb-2011-12-4-221

    Article  CAS  Google Scholar 

  118. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8(11):884–896. https://doi.org/10.1038/nrg2179

    Article  CAS  PubMed  Google Scholar 

  119. Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23(10):578–587. https://doi.org/10.1016/j.tree.2008.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  120. Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12(1):19–31. https://doi.org/10.1038/nrg2916

    Article  CAS  PubMed  Google Scholar 

  121. Joshua-Tor L, Hannon GJ (2011) Ancestral roles of small RNAs: an ago-centric perspective. CSH Perspect Biol 3(10):a003772. https://doi.org/10.1101/cshperspect.a003772

    Article  CAS  Google Scholar 

  122. Khraiwesh B, Zhu JK, Zhu J (1819) Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochim Biophys Acta Gene Regul Mech 2:137–148. https://doi.org/10.1016/j.bbagrm.2011.05.001

    Article  CAS  Google Scholar 

  123. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12(7):301–309. https://doi.org/10.1016/j.tplants.2007.05.001

    Article  CAS  PubMed  Google Scholar 

  124. Xie M, Yu B (2015) siRNA-directed DNA methylation in plants. Curr Genom 16(1):23–31. https://doi.org/10.2174/1389202915666141128002211

    Article  CAS  Google Scholar 

  125. Sudan J, Raina M, Singh R (2018) Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. 3 Biotech 8(3):172. https://doi.org/10.1007/s13205-018-1202-6

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bologna NG, Voinnet O (2014) The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65:473–503. https://doi.org/10.1146/annurev-arplant-050213-035728

    Article  CAS  PubMed  Google Scholar 

  127. Cagirici HB, Alptekin B, Budak H (2017) RNA sequencing and co-expressed long non-coding RNA in modern and wild wheats. Sci Rep 7(1):1–16. https://doi.org/10.1038/s41598-017-11170-8

    Article  CAS  Google Scholar 

  128. Huang Y, Li L, Smith KP, Muehlbauer GJ (2016) Differential transcriptomic responses to Fusarium graminearum infection in two barley quantitative trait loci associated with Fusarium head blight resistance. BMC Genomics 17(1):387. https://doi.org/10.1186/s12864-016-2716-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Shumayla SS, Taneja M, Tyagi S, Singh K, Upadhyay SK (2017) Survey of high throughput RNA-Seq data reveals potential roles for lncRNAs during development and stress response in bread wheat. Front Plant Sci 8:1019. https://doi.org/10.3389/fpls.2017.01019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Unver T, Tombuloglu H (2020) Barley long non-coding RNAs (lncRNA) responsive to excess boron. Genomics 112(2):1947–1955. https://doi.org/10.1016/j.ygeno.2019.11.007

    Article  CAS  PubMed  Google Scholar 

  131. Zhang H, Chen X, Wang C, Xu Z, Wang Y, Liu X, Kang Z, Ji W (2013) Long non-coding genes implicated in response to stripe rust pathogen stress in wheat (Triticumaestivum L.). Mol Biol Rep 40(11):6245–6253. https://doi.org/10.1007/s11033-013-2736-7

    Article  CAS  PubMed  Google Scholar 

  132. Banerjee A, Roychoudhury A (2018) The gymnastics of epigenomics in rice. Plant Cell Rep 37(1):25–49. https://doi.org/10.1007/s00299-017-2192-2

    Article  CAS  PubMed  Google Scholar 

  133. Axtell MJ (2013) Classification and comparison of small RNAs from plants. Annu Rev Plant Biol 64:137–159. https://doi.org/10.1146/annurev-arplant-050312-120043

    Article  CAS  PubMed  Google Scholar 

  134. Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010) DNA methylation mediated by a microRNA pathway. Mol Cell 38(3):465–475. https://doi.org/10.1016/j.molcel.2010.03.008

    Article  CAS  PubMed  Google Scholar 

  135. Hong H, Liu Y, Zhang H, Xiao J, Li X, Wang S (2015) Small RNAs and gene network in a durable disease resistance gene-mediated defense responses in rice. PLoS ONE 10(9):e0137360. https://doi.org/10.1371/journal.pone.0137360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Jung I, Ahn H, Shin SJ, Kim J, Kwon HB, Jung W, Kim S (2016) Clustering and evolutionary analysis of small RNAs identify regulatory siRNA clusters induced under drought stress in rice. BMC Syst Biol 10(4):423–432. https://doi.org/10.1186/s12918-016-0355-3

    Article  CAS  Google Scholar 

  137. Wei L, Gu L, Song X, Cui X, Lu Z, Zhou M, Wang L, Hu F, Zhai J, Meyers BC, Cao X (2014) Dicer-like 3 produces transposable element-associated 24-nt siRNAs that control agricultural traits in rice. Proc Natl Acad Sci USA 111(10):3877–3882. https://doi.org/10.1073/pnas.1318131111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yan Y, Zhang Y, Yang K, Sun Z, Fu Y, Chen X, Fang R (2011) Small RNAs from MITE-derived stem-loop precursors regulate abscisic acid signaling and abiotic stress responses in rice. Plant J 65(5):820–828. https://doi.org/10.1111/j.1365-313x.2010.04467.x

    Article  CAS  PubMed  Google Scholar 

  139. Yang M, Xu Z, Zhao W, Liu Q, Li Q, Lu L, Liu R, Zhang X, Cui F (2018) Rice stripe virus-derived siRNAs play different regulatory roles in rice and in the insect vector Laodelphax striatellus. BMC Plant Biol 18(1):219. https://doi.org/10.1186/s12870-018-1438-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Fan Y, Yang J, Mathioni SM, Yu J, Shen J, Yang X, Wang L, Zhang Q, Cai Z, Xu C, Li X (2016) PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc Natl Acad Sci USA 113(52):15144–15149. https://doi.org/10.1073/pnas.1619159114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Niu D, Zhang X, Song X, Wang Z, Li Y, Qiao L, Wang Z, Liu J, Deng Y, He Z, Yang D (2018) Deep sequencing uncovers rice long siRNAs and its involvement in immunity against Rhizoctonia solani. Phytopathol 108(1):60–69. https://doi.org/10.1094/phyto-03-17-0119-r

    Article  CAS  Google Scholar 

  142. Liu X, Li D, Zhang D, Yin D, Zhao Y, Ji C, Zhao X, Li X, He Q, Chen R, Hu S (2018) A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. New Phytol 218(2):774–788. https://doi.org/10.1111/nph.15023

    Article  CAS  PubMed  Google Scholar 

  143. Lu Y, Zhou DX, Zhao Y (2020) Understanding epigenomics based on the rice model. Theoret Appl Genet 133(5):1–19. https://doi.org/10.1007/s00122-019-03518-7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MMR, AV, and RKV wrote the manuscript draft. PS, PS, and RKG critically revised the article. The manuscript has been read and approved by all the authors before submission.

Corresponding author

Correspondence to R. K. Gaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

In compliance with the ethical standards, this article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, .M., Vaishnav, A., Verma, R.K. et al. Epigenetic regulation of salinity stress responses in cereals. Mol Biol Rep 49, 761–772 (2022). https://doi.org/10.1007/s11033-021-06922-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06922-9

Keywords