Skip to main content
Log in

The influence of regulatory elements on Mycoplasma hyopneumoniae 7448 transcriptional response during oxidative stress and heat shock

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The comprehension of genome organization and gene modulation is essential for understanding pathogens’ infection mechanisms. Mycoplasma hyopneumoniae 7448 genome is organized in transcriptional units (TUs), which are flanked by regulatory elements such as putative promoters, terminators and repetitive sequences. Yet the relationship between the presence of these elements and bacterial responses during stress conditions remains unclear. Thus, in this study, in silico and RT-qPCR analyses were associated to determine the effect of regulatory elements in gene expression regulation upon heat shock and oxidative stress conditions.

Methods and results

Thirteen TU’s organizational profiles were found based on promoters and terminators distribution. Differential expression in genes sharing the same TUs was observed, suggesting the activity of internal regulatory elements. Moreover, 88.8% of tested genes were differentially expressed under oxidative stress in comparison to the control condition, being 81.3% of them surrounded by their own regulatory elements. Similarly, under heat shock, 44.4% of the genes showed regulation when compared to control condition, being 75.0% of them surrounded by their own regulatory elements.

Conclusions

Altogether, this data suggests the activity of internal regulatory elements in gene modulation of M. hyopneumoniae 7448 transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

All data generated or analysed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

References

  1. Goodwin RF, Hurrell JM, Whittlestone P (1968) Production of enzootic pneumonia in pigs with Mycoplasma suipneumoniae grown in embryonated hens’ eggs. Br J Exp Pathol 49(5):431–435

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Minion FC, Lefkowitz EJ, Madsen ML, Cleary BJ, Swartzell SM, Mahairas GG (2004) The genome sequence of Mycoplasma hyopneumoniae strain 232, the agent of swine mycoplasmosis. J Bacteriol 186(21):7123–7133. https://doi.org/10.1128/JB.186.21.7123-7133.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vasconcelos AT, Ferreira HB, Bizarro et al (2005) Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae. J Bacteriol 187(16):5568–5577. https://doi.org/10.1128/JB.187.16.5568-5577.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu W, Feng Z, Fang L et al (2011) Complete genome sequence of Mycoplasma hyopneumoniae strain 168. J Bacteriol 193(4):1016–1017. https://doi.org/10.1128/JB.01305-10

    Article  CAS  PubMed  Google Scholar 

  5. Liu W, Xiao S, Li M et al (2013) Comparative genomic analyses of Mycoplasma hyopneumoniae pathogenic 168 strain and its high-passaged attenuated strain. BMC Genom 14:80. https://doi.org/10.1186/1471-2164-14-80

    Article  CAS  Google Scholar 

  6. Siqueira FM, Thompson CE, Virginio VG, Gonchoroski T, Reolon L, Almeida LG, Fonsêca MM, Souza R, Prosdocimi F, Schrank IS, Ferreira HB, Vasconcelos ATR, Zaha A (2013) New insights on the biology of swine respiratory tract mycoplasmas from a comparative genome analysis. BMC Genom 14:175. https://doi.org/10.1186/1471-2164-14-175

    Article  CAS  Google Scholar 

  7. Halbedel S, Eilers H, Jonas B, Busse J, Hecker M, Engelmann S, Stülke J (2007) Transcription in Mycoplasma pneumoniae: analysis of the promoters of the ackA and ldh genes. J Mol Biol 371(3):596–607. https://doi.org/10.1016/j.jmb.2007.05.098

    Article  CAS  PubMed  Google Scholar 

  8. Weiner J, Herrmann R, Browning GF (2000) Transcription in Mycoplasma pneumoniae. Nucleic Acids Res 28(22):4488–4496. https://doi.org/10.1093/nar/28.22.4488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weber S, Sant’Anna FH, Schrank IS (2012) Unveiling Mycoplasma hyopneumoniae promoters: sequence definition and genomic distribution. DNA Res 19(2):103–115. https://doi.org/10.1093/dnares/dsr045

    Article  CAS  PubMed Central  Google Scholar 

  10. Kingsford CL, Ayanbule K, Salzberg SL (2007) Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol 8(2):R22. https://doi.org/10.1186/gb-2007-8-2-r22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fritsch TE, Siqueira FM, Schrank IS (2015) Intrinsic terminators in Mycoplasma hyopneumoniae transcription. BMC Genom 16(1):273. https://doi.org/10.1186/s12864-015-1468-6

    Article  CAS  Google Scholar 

  12. Mrázek J (2006) Analysis of distribution indicates diverse functions of simple sequence repeats in Mycoplasma genomes. Mol Biol Evol 23(7):1370–1385. https://doi.org/10.1093/molbev/msk023

    Article  CAS  PubMed  Google Scholar 

  13. Yang Y, Ames GF (1988) DNA gyrase binds to the family of prokaryotic repetitive extragenic palindromic sequences. Proc Nat Acad Sci USA 85(23):8850–8854. https://doi.org/10.1073/pnas.85.23.8850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stern MJ, Ames GF, Smith NH, Robinson EC, Higgins CF (1984) Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37(3):1015–1026. https://doi.org/10.1016/0092-8674(84)90436-7

    Article  CAS  PubMed  Google Scholar 

  15. Deutscher MP (2006) Degradation of RNA in bacteria: comparison of mRNA and stable RNA. Nucleic Acids Res 34(2):659–666. https://doi.org/10.1093/nar/gkj472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siqueira FM, Schrank A, Schrank IS (2011) Mycoplasma hyopneumoniae transcription unit organization: genome survey and prediction. DNA Res 18(6):413–422. https://doi.org/10.1093/dnares/dsr028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Siqueira FM, Gerber AL, Guedes RL, Almeida LG, Schrank IS, Vasconcelos AT, Zaha A (2014) Unravelling the transcriptome profile of the Swine respiratory tract mycoplasmas. PLoS ONE 9(10):e110327. https://doi.org/10.1371/journal.pone.0110327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cattani AM, Siqueira FM, Guedes RL, Schrank IS (2016) Repetitive elements in Mycoplasma hyopneumoniae transcriptional regulation. PLoS ONE 11(12):e0168626. https://doi.org/10.1371/journal.pone.0168626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Madsen ML, Nettleton D, Thacker EL, Minion FC (2006) Transcriptional profiling of Mycoplasma hyopneumoniae during iron depletion using microarrays. Microbiology (Reading) 152(4):937–944. https://doi.org/10.1099/mic.0.28674-0

    Article  CAS  Google Scholar 

  20. Madsen ML, Nettleton D, Thacker EL, Edwards R, Minion FC (2006) Transcriptional profiling of Mycoplasma hyopneumoniae during heat shock using microarrays. Infect Immun 74(1):160–166. https://doi.org/10.1128/IAI.74.1.160-166.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Madsen ML, Puttamreddy S, Thacker EL, Carruthers MD, Minion FC (2008) Transcriptome changes in Mycoplasma hyopneumoniae during infection. Infect Immun 76(2):658–663. https://doi.org/10.1128/IAI.01291-07

    Article  CAS  PubMed  Google Scholar 

  22. Oneal MJ, Schafer ER, Madsen ML, Minion FC (2008) Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine. Microbiology (Reading) 154(9):2581–2588. https://doi.org/10.1099/mic.0.2008/020230-0

    Article  CAS  Google Scholar 

  23. Schafer ER, Oneal MJ, Madsen ML, Minion FC (2007) Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to hydrogen peroxide. Microbiology (Reading) 153(11):3785–3790. https://doi.org/10.1099/mic.0.2007/011387-0

    Article  CAS  Google Scholar 

  24. Ishfaq M, Zhang W, Ali Shah SW, Wu Z, Wang J, Ding L, Li J (2020) The effect of Mycoplasma gallisepticum infection on energy metabolism in chicken lungs: Through oxidative stress and inflammation. Microb Pathog 138:103848. https://doi.org/10.1016/j.micpath.2019.103848

    Article  CAS  PubMed  Google Scholar 

  25. Khan LA, Miles RJ, Nicholas RA (2005) Hydrogen peroxide production by Mycoplasma bovis and Mycoplasma agalactiae and effect of in vitro passage on a Mycoplasma bovis strain producing high levels of H2O2. Vet Res Commun 29(3):181–188. https://doi.org/10.1023/b:verc.0000047506.04096.06

    Article  CAS  PubMed  Google Scholar 

  26. Paes JA, Zimmer FL, Moura H, Barr JR, Ferreira HB (2019) Differential responses to stress of two Mycoplasma hyopneumoniae strains. J Proteomics 199:67–76. https://doi.org/10.1016/j.jprot.2019.03.006

    Article  CAS  PubMed  Google Scholar 

  27. Ferrarini MG, Mucha SG, Parrot D et al (2018) Hydrogen peroxide production and myo-inositol metabolism as important traits for virulence of Mycoplasma hyopneumoniae. Mol Microbiol 108(6):683–696. https://doi.org/10.1111/mmi.13957

    Article  CAS  Google Scholar 

  28. Carver T, Harris SR, Berriman M, Parkhill J, McQuillan JA (2012) Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics 28(4):464–469. https://doi.org/10.1093/bioinformatics/btr703

    Article  CAS  PubMed  Google Scholar 

  29. Friis NF (1975) Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare a survey. Nord Vet Med 27(6):337–339

    CAS  PubMed  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  31. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37(6):e45. https://doi.org/10.1093/nar/gkp045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moitinho-Silva L, Heineck BL, Reolon LA et al (2012) Mycoplasma hyopneumoniae type I signal peptidase: expression and evaluation of its diagnostic potential. Vet Microbiol 154(3–4):282–291. https://doi.org/10.1016/j.vetmic.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  33. Siqueira FM, Weber SS, Cattani AM, Schrank IS (2014) Genome organization in Mycoplasma hyopneumoniae: identification of promoter-like sequences. Mol Biol Rep 41(8):5395–5402. https://doi.org/10.1007/s11033-014-3411-3

    Article  CAS  PubMed  Google Scholar 

  34. Miravet-Verde S, Lloréns-Rico V, Serrano L (2017) Alternative transcriptional regulation in genome-reduced bacteria. Curr Opin Microbiol 39:89–95. https://doi.org/10.1016/j.mib.2017.10.022

    Article  CAS  PubMed  Google Scholar 

  35. Kamminga T, Benis N, Santos V, Bijlsma J, Schaap PJ (2020) Combined transcriptome sequencing of Mycoplasma hyopneumoniae and infected pig lung tissue reveals up-regulation of bacterial F1-Like ATPase and down-regulation of the P102 cilium adhesin in vivo. Front Microbiol 11:1679. https://doi.org/10.3389/fmicb.2020.01679

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang C, Gong B, Bushel PR et al (2014) The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol 32(9):926–932. https://doi.org/10.1038/nbt.3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Musatovova O, Dhandayuthapani S, Baseman JB (2006) Transcriptional heat shock response in the smallest known self-replicating cell, Mycoplasma genitalium. J Bacteriol 188(8):2845–2855. https://doi.org/10.1128/JB.188.8.2845-2855.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Benders GA, Powell BC, Hutchison CA (2005) Transcriptional analysis of the conserved ftsZ gene cluster in Mycoplasma genitalium and Mycoplasma pneumoniae. J Bacteriol 187(13):4542–4551. https://doi.org/10.1128/JB.187.13.4542-4551.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eraso JM, Markillie LM, Mitchell HD, Taylor RC, Orr G, Margolin W (2014) The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli. J Bacteriol 196(11):2053–2066. https://doi.org/10.1128/JB.01370-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fisunov GY, Evsyutina DV, Semashko TA, Arzamasov AA, Manuvera VA, Letarov AV, Govorun VM (2016) Binding site of MraZ transcription factor in Mollicutes. Biochimie 125:59–65. https://doi.org/10.1016/j.biochi.2016.02.016

    Article  CAS  PubMed  Google Scholar 

  41. Martínez-Torró C, Torres-Puig S, Marcos-Silva M et al (2021) Functional characterization of the cell division gene cluster of the wall-less bacterium Mycoplasma genitalium. Front Microbiol 12:695572. https://doi.org/10.3389/fmicb.2021.695572

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pinto PM, Klein CS, Zaha A, Ferreira HB (2009) Comparative proteomic analysis of pathogenic and non-pathogenic strains from the swine pathogen Mycoplasma hyopneumoniae. Proteome Sci 7:45. https://doi.org/10.1186/1477-5956-7-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bogema DR, Deutscher AT, Woolley LK et al (2012) Characterization of cleavage events in the multifunctional cilium adhesin Mhp684 (P146) reveals a mechanism by which Mycoplasma hyopneumoniae regulates surface topography. mBio 3(2):e00282-11. https://doi.org/10.1128/mBio.00282-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jarocki VM, Raymond BBA, Tacchi JL, Padula MP, Djordjevic SP (2019) Mycoplasma hyopneumoniae surface-associated proteases cleave bradykinin, substance P, neurokinin A and neuropeptide Y. Sci Rep 9(1):14585. https://doi.org/10.1038/s41598-019-51116-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Pró-Reitoria de Pesquida (PROPESQ) of Universidade Federal do Rio Grande do Sul.

Funding

This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) – Finance Code 001 and Pró-Reitoria de Pesquida (PROPESQ) of Universidade Federal do Rio Grande do Sul – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

GMB has made major contributions to (i) the acquisition, analysis and interpretation of the data, and (ii) writing of the manuscript. AMC has made major contributions to (i) analysis and interpretation of the data, and (ii) writing of the manuscript. ISS has made major contributions to (i) the conception and design of the study, and (ii) analysis and interpretation of the data. FMS has made major contributions to (i) the conception of the study, (ii) analysis and interpretation of the data, and (iii) writing of the manuscript.

Corresponding author

Correspondence to Franciele Maboni Siqueira.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

11033_2021_6851_MOESM1_ESM.eps

Supplementary file1 (EPS 10 kb) Fig. 1 Relative expression of known regulated genes exposed to in vitro oxidative stress and heat shock. a Relative mRNA expression of ftsY, mglA, glyS, and atpB genes during oxidative stress. b Relative mRNA expression of glpF, glpK, oppC, dnaJ, and dnaK genes during heat shock. Statistical difference is indicated by (*) (p<0.05) and the standard deviation is shown by the bars in each column

Supplementary file2 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merker Breyer, G., Malvessi Cattani, A., Silveira Schrank, I. et al. The influence of regulatory elements on Mycoplasma hyopneumoniae 7448 transcriptional response during oxidative stress and heat shock. Mol Biol Rep 49, 139–147 (2022). https://doi.org/10.1007/s11033-021-06851-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06851-7

Keywords

Navigation