Skip to main content

Advertisement

Log in

Insights of CRISPR-Cas systems in stem cells: progress in regenerative medicine

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Regenerative medicine, a therapeutic approach using stem cells, aims to rejuvenate and restore the normalized function of the cells, tissues, and organs that are injured, malfunctioning, and afflicted. This influential technology reaches its zenith when it is integrated with the CRISPR-Cas (clustered regularly interspaced short palindromic repeats—CRISPR associated) technology of genome editing. This tool acts as a programmable restriction enzyme system, which targets DNA as well as RNA and gets redeployed for the customization of DNA/RNA sequences. The dynamic behaviour of nuclear manipulation and transcriptional regulation by CRISPR-Cas technology renders it with numerous employment in the field of biologics and research. Here, the possible impact of the commonly practiced CRISPR-Cas systems in regenerative medicines is being reviewed. Primarily, the discussion of the working mechanism of this system and the fate of stem cells will be scrutinized. A detailed description of the CRISPR based regenerative therapeutic approaches for a horde of diseases like genetic disorders, neural diseases, and blood-related diseases is elucidated.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Please contact author for data requests.

Abbreviations

CRISPR-Cas:

Clustered repeat interspaced short palindromic repeats/CRISPR associated proteins

iPSC:

Induced pluripotent stem cells

TALEN:

Transcription activator-like endonucleases

ZFN:

Zinc finger nucleases

RNP:

Ribonucleotide protein

PAM:

Protospacer adjacent motiff

crRNA:

CRISPR RNA

NHEJ:

Non homologous end joining

HDR:

Homology-directed repair

tracrRNA:

Trans activating crRNA

dsRNA:

Double stranded RNA

BMP4:

Bone morphogenic protein 4

UM-MSC:

Umbilical cord-derived mesenchymal stem cells

OM:

Osteogenic differentiation media

CRISPRai:

CRISPR activation/repression

BMSC:

Bone marrow-derived mesenchymal stem cells

GDNF:

Glial cell line-derived growth factor

BDNF:

Brain-derived neurotrophic factor

NGF:

Nerve growth factor

ALS:

Amyotrophic lateral sclerosis

sALS:

Sporadic amyotrophic lateral sclerosis

fALS:

Familial amyotrophic lateral sclerosis

SOD1:

Cu–Zn superoxide dismutase 1

TDP-43:

TAR DNA binding protein 43

VCP:

Valosin containing protein

ANG:

Angiogenin

OPTN:

Optineurin

HLC:

Hepatocyte-like cells

RDEB:

Recessive dystrophic epidermolysisbullosa

DMD:

Duchenne muscular dystrophy

OA:

Osteoarthritis

PH1:

Primary hyperoxaluria type 1

CFTR:

Cystic fibrosis transmembrane regulator

8. References

  1. Badylak SF, Nerem RM (2010) Progress in tissue engineering and regenerative medicine. Proc Natl Acad Sci USA 107(8):3285–3286. https://doi.org/10.1073/pnas.1000256107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wobma H, Vunjak-Novakovic G (2016) Tissue engineering and regenerative medicine 2015: a year in review. Tissue Eng B: Rev 22(2):101–113. https://doi.org/10.1089/ten.TEB.2015.0535

    Article  Google Scholar 

  3. Park KM, Shin YM, Kim K, Shin H (2018) Tissue engineering and regenerative medicine 2017: a year in review. Tissue Eng B: Rev 24(5):327–344. https://doi.org/10.1089/ten.teb.2017.0081

    Article  Google Scholar 

  4. Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K (2013) Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 12(4):393. https://doi.org/10.1016/j.stem.2013.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hendriks WT, Jiang X, Daheron L, Cowan CA (2015) TALEN-and CRISPR/Cas9-mediated gene editing in human pluripotent stem cells using lipid-based transfection. Curr Protoc Stem Cell Biol. https://doi.org/10.1016/j.stem.2015.12.002

    Article  PubMed  Google Scholar 

  6. Lei Y, Lee CL, Joo KI, Zarzar J, Liu Y, Dai B et al (2011) Gene editing of human embryonic stem cells via an engineered baculoviral vector carrying zinc-finger nucleases. Mol Ther 19(5):942–950. https://doi.org/10.1038/mt.2011.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen KY, Knoepfler PS (2016) To CRISPR and beyond: the evolution of genome editing in stem cells. Regener Med 11(8):801–816. https://doi.org/10.2217/rme-2016-0107

    Article  CAS  Google Scholar 

  8. Zhang Z, Zhang Y, Gao F, Han S, Cheah KS, Tse HF, Lian Q (2017) CRISPR/Cas9 genome-editing system in human stem cells: current status and future prospects. Mol Ther-Nucl Acids 9:230–241. https://doi.org/10.1016/j.omtn.2017.09.009

    Article  CAS  Google Scholar 

  9. Garate Z, Davis BR, Quintana-Bustamante O, Segovia JC (2013) New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells. Hum Gene Ther 24(6):571–583. https://doi.org/10.1089/hum.2012.251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith C, Ye Z, Cheng L (2016) Genome editing in human pluripotent stem cells. Cold Spring Harbor Protoc. https://doi.org/10.1101/pdb.top086819

    Article  Google Scholar 

  11. Sharma DK (2016) New technologies in regenerative medicine. Indian J Genet Mol Res 5(1):19

    Google Scholar 

  12. Svendsen CN (2013) Back to the future: how human induced pluripotent stem cells will transform regenerative medicine. Hum Mol Genet 22(R1):R32–R38. https://doi.org/10.1093/hmg/ddt379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78. https://doi.org/10.1016/j.mib.2017.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P et al (2011) Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 9(6):467–477. https://doi.org/10.1038/nrmicro2577

    Article  CAS  PubMed  Google Scholar 

  15. Amitai G, Sorek R (2016) CRISPR–Cas adaptation: insights into the mechanism of action. Nat Rev Microbiol 14(2):67. https://doi.org/10.1038/nrmicro.2015.14

    Article  CAS  PubMed  Google Scholar 

  16. Van Der Oost J, Westra ER, Jackson RN, Wiedenheft B (2014) Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat Rev Microbiol 12(7):479–492. https://doi.org/10.1038/nrmicro3279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hille F, Charpentier E (2016) CRISPR-Cas: biology, mechanisms and relevance. Philos Trans R Soc B 371(1707):20150496. https://doi.org/10.1098/rstb.2015.0496

    Article  CAS  Google Scholar 

  18. Rath D, Amlinger L, Rath A, Lundgren M (2015) The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie 117:119–128. https://doi.org/10.1016/j.biochi.2015.03.025

    Article  CAS  PubMed  Google Scholar 

  19. Makarova KS, Aravind L, Wolf YI, Koonin EV (2011) Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems. Biol Direct 6(1):1–27. https://doi.org/10.1186/1745-6150-6-38

    Article  CAS  Google Scholar 

  20. Wang J, Zhang C, Feng B (2020) The rapidly advancing Class 2 CRISPR-Cas technologies: a customizable toolbox for molecular manipulations. J Cell Mol Med 24(6):3256–3270. https://doi.org/10.1111/jcmm.15039

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wilbie D, Walther J, Mastrobattista E (2019) Delivery aspects of CRISPR/Cas for in vivo genome editing. Acc Chem Res 52(6):1555–1564. https://doi.org/10.1021/acs.accounts.9b00106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang D, Mou H, Li S, Li Y, Hough S, Tran K et al (2015) Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther 26(7):432–442. https://doi.org/10.1089/hum.2015.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Naso MF, Tomkowicz B, Perry WL, Strohl WR (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31(4):317–334. https://doi.org/10.1007/s40259-017-0234-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thummel R, Bai S, SarrasJr MP, Song P, McDermott J, Brewer J et al (2006) Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev Dyn 235(2):336–346. https://doi.org/10.1002/dvdy.20630

    Article  CAS  PubMed  Google Scholar 

  25. Horii T, Arai Y, Yamazaki M, Morita S, Kimura M, Itoh M et al (2014) Validation of microinjection methods for generating knockout mice by CRISPR/Cas-mediated genome engineering. Sci Rep 4(1):1–6. https://doi.org/10.1038/srep04513

    Article  CAS  Google Scholar 

  26. Glass Z, Lee M, Li Y, Xu Q (2018) Engineering the delivery system for CRISPR-based genome editing. Trends Biotechnol 36(2):173–185. https://doi.org/10.1016/j.tibtech.2017.11.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang M, Zuris JA, Meng F, Rees H, Sun S, Deng P et al (2016) Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci USA 113(11):2868–2873. https://doi.org/10.1073/pnas.1520244113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tong R, Christian DA, Tang L, Cabral H, Baker JR, Kataoka K et al (2009) Nanopolymeric therapeutics.  MRS Bull 34(6):422–431. https://doi.org/10.1557/mrs2009.118

    Article  CAS  Google Scholar 

  29. Ramakrishna S, Dad ABK, Beloor J, Gopalappa R, Lee SK, Kim H (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24(6):1020–1027. https://doi.org/10.1101/gr.171264.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mout R, Ray M, Yesilbag Tonga G, Lee YW, Tay T, Sasaki K, Rotello VM (2017) Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano 11(3):2452–2458. https://doi.org/10.1021/acsnano.6b07600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bongso A, Lee EH (2005) Stem cells: their definition, classification and sources. Stem Cells. https://doi.org/10.1142/9789812569370_0001

    Article  Google Scholar 

  32. Ilic D, Polak JM (2011) Stem cells in regenerative medicine: introduction. Br Med Bull 98(1):117–126. https://doi.org/10.1093/bmb/ldr012

    Article  PubMed  Google Scholar 

  33. Hipp J, Atala A (2008) Sources of stem cells for regenerative medicine. Stem Cell Rev 4(1):3–11. https://doi.org/10.1007/s12015-008-9010-8

    Article  PubMed  Google Scholar 

  34. Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7(6):862–869. https://doi.org/10.1016/0955-0674(95)80071-9

    Article  CAS  PubMed  Google Scholar 

  35. Götherström C, Ringden O, Westgren M, Tammik C, Le Blanc K (2003) Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells. Bone Marrow Trans 32(3):265–272. https://doi.org/10.1038/sj.bmt.1704111

    Article  Google Scholar 

  36. Ringe J, Kaps C, Burmester GR, Sittinger M (2002) Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften 89(8):338–351. https://doi.org/10.1007/s00114-002-0344-9

    Article  CAS  PubMed  Google Scholar 

  37. Verfaillie CM (2002) Adult stem cells: assessing the case for pluripotency. Trends Cell Biol 12(11):502–508. https://doi.org/10.1016/s0962-8924(02)02386-3

    Article  CAS  PubMed  Google Scholar 

  38. Yang J, Yamato M, Nishida K, Ohki T, Sekine M, Sekine H et al (2006) Cell delivery in regenerative medicine: the cell sheet engineering approach. J Control Release 116(2):193–203. https://doi.org/10.1016/j.jconrel.2006.06.022

    Article  CAS  PubMed  Google Scholar 

  39. Choi J, Bae T, Byambasuren N, Park SH, Jo CH, Kim D et al (2020) CRISPR-Cpf1 activation of endogenous BMP4 gene for osteogenic differentiation of umbilical-cord-derived mesenchymal stem cells. Molr Ther-Methods Clin Dev 17:309–316. https://doi.org/10.1016/j.omtm.2019.12.010

    Article  CAS  Google Scholar 

  40. Tsukamoto T, Sakai E, Iizuka S, Taracena-Gándara M, Sakurai F, Mizuguchi H (2018) Generation of the adenovirus vector-mediated CRISPR/Cpf1 system and the application for primary human hepatocytes prepared from humanized mice with chimeric liver. Biol Pharm Bull 41(7):1089–1095. https://doi.org/10.1248/bpb.b18-00222

    Article  CAS  PubMed  Google Scholar 

  41. Lin CY, Chang YH, Li KC, Lu CH, Sung LY, Yeh CL et al (2013) The use of ASCs engineered to express BMP2 or TGF-β3 within scaffold constructs to promote calvarial bone repair. Biomaterials 34(37):9401–9412. https://doi.org/10.1016/j.biomaterials.2013.08.051

    Article  CAS  PubMed  Google Scholar 

  42. Truong VA, Hsu MN, Kieu Nguyen NT, Lin MW, Shen CC, Lin C, Y.,& Hu, Y. C. (2019) CRISPRai for simultaneous gene activation and inhibition to promote stem cell chondrogenesis and calvarial bone regeneration. Nucleic Acids Res 47(13):e74–e74. https://doi.org/10.1093/nar/gkz267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bester AC, Lee JD, Chavez A, Lee YR, Nachmani D, Vora S et al (2018) An integrated genome-wide CRISPRa approach to functionalize lncRNAs in drug resistance. Cell 173(3):649–664. https://doi.org/10.1016/j.cell.2018.03.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grinsell D, Keating CP (2014) Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. BioMed Res Int. https://doi.org/10.1155/2014/698256

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hsu MN, Liao HT, Truong VA, Huang KL, Yu FJ, Chen HH et al (2019) CRISPR-based activation of endogenous neurotrophic genes in adipose stem cell sheets to stimulate peripheral nerve regeneration. Theranostics 9(21):6099. https://doi.org/10.7150/thno.36790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F et al (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26(11):1276–1284. https://doi.org/10.1038/nbt.1503

    Article  CAS  PubMed  Google Scholar 

  47. Faravelli I, Riboldi G, Nizzardo M, Simone C, Zanetta C, Bresolin N et al (2014) Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell Mol Life Sci 71(17):3257–3268. https://doi.org/10.1007/s00018-014-1613-4

    Article  CAS  PubMed  Google Scholar 

  48. Csobonyeiova M, Polak S, Nicodemou A, Danisovic L (2017) Induced pluripotent stem cells in modeling and cell-based therapy of amyotrophic lateral sclerosis. J Physiol Pharmacol 68:649–657

    CAS  PubMed  Google Scholar 

  49. Wang L, Yi F, Fu L, Yang J, Wang S, Wang Z et al (2017) CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein Cell 8(5):365–378. https://doi.org/10.1007/s13238-017-0397-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao C, Devlin AC, Chouhan AK, Selvaraj BT, Stavrou M, Burr K et al (2020) Mutant C9orf72 human iPSC-derived astrocytes cause non-cell autonomous motor neuron pathophysiology. Glia 68(5):1046–1064. https://doi.org/10.1002/glia.23761

    Article  PubMed  Google Scholar 

  51. Park CY, Lee DR, Sung JJ, Kim DW (2016) Genome-editing technologies for gene correction of hemophilia. Hum Genet 135(9):977–981. https://doi.org/10.1007/s00439-016-1699-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Evens H, Chuah MK, VandenDriessche T (2018) Haemophilia gene therapy: from trailblazer to gamechanger. Haemophilia 24:50–59. https://doi.org/10.1111/hae.13494

    Article  PubMed  Google Scholar 

  53. Nelwan M (2017) Hemophilia A and induced pluripotent stem cells. J Adv Biol Biotechnol 14(3):1–11. https://doi.org/10.9734/JABB/2017/35111

    Article  Google Scholar 

  54. Park CY, Kim DH, Son JS, Sung JJ, Lee J, Bae S et al (2015) Functional correction of large factor VIII gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9. Cell Stem Cell 17(2):213–220. https://doi.org/10.1016/j.stem.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  55. Fomin ME, Togarrati PP, Muench MO (2014) Progress and challenges in the development of a cell-based therapy for hemophilia A. J Thromb Haemost 12(12):1954–1965. https://doi.org/10.1111/jth.12750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ramaswamy S, Tonnu N, Menon T, Lewis BM, Green KT, Wampler D (2018) Autologous and heterologous cell therapy for hemophilia B toward functional restoration of factor IX. Cell Rep 23(5):1565–1580. https://doi.org/10.1016/j.celrep.2018.03.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stephens CJ, Lauron EJ, Kashentseva E, Lu ZH, Yokoyama WM, Curiel DT (2019) Long-term correction of hemophilia B using adenoviral delivery of CRISPR/Cas9. J Controll Release 298:128–141. https://doi.org/10.1016/j.jconrel.2019.02.009

    Article  CAS  Google Scholar 

  58. Lyu C, Shen J, Wang R, Gu H, Zhang J, Xue F et al (2018) Targeted genome engineering in human induced pluripotent stem cells from patients with hemophilia B using the CRISPR-Cas9 system. Stem Cell Res Ther 9(1):1–12. https://doi.org/10.1186/s13287-018-0839-8

    Article  CAS  Google Scholar 

  59. Morishige S, Mizuno S, Ozawa H, Nakamura T, Mazahery A, Nomura K et al (2020) CRISPR/Cas9-mediated gene correction in hemophilia B patient-derived iPSCs. Int J Hematol 111(2):225–233. https://doi.org/10.1007/s12185-019-02765-0

    Article  CAS  PubMed  Google Scholar 

  60. Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A et al (2006) Correction of junctional epidermolysisbullosa by transplantation of genetically modified epidermal stem cells. Nat Med 12(12):1397–1402. https://doi.org/10.1038/nm1504

    Article  CAS  PubMed  Google Scholar 

  61. Webber BR, Osborn MJ, McElroy AN, Twaroski K, Lonetree CL, DeFeo AP et al (2016) CRISPR/Cas9-based genetic correction for recessive dystrophic epidermolysisbullosa. NPJ Regener Med 1(1):1–11. https://doi.org/10.1038/npjregenmed.2016.14

    Article  Google Scholar 

  62. Bonafont J, Mencía Á, García M, Torres R, Rodríguez S, Carretero M et al (2019) Clinically relevant correction of recessive dystrophic epidermolysisbullosa by dual sgRNA CRISPR/Cas9-mediated gene editing. Mol Ther 27(5):986–998. https://doi.org/10.1016/j.ymthe.2019.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hainzl S, Peking P, Kocher T, Murauer EM, Larcher F, Del Rio M et al (2017) COL7A1 editing via CRISPR/Cas9 in recessive dystrophic epidermolysisbullosa. Mol Ther 25(11):2573–2584. https://doi.org/10.1016/j.ymthe.2017.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Matre PR, Mu X, Wu J, Danila D, Hall MA, Kolonin MG et al (2019) CRISPR/Cas9-based dystrophin restoration reveals a novel role for dystrophin in bioenergetics and stress resistance of muscle progenitors. Stem Cells 37(12):1615–1628. https://doi.org/10.1002/stem.3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hagan M, Ashraf M, Kim IM, Weintraub NL, Tang Y (2018) Effective regeneration of dystrophic muscle using autologous iPSC-derived progenitors with CRISPR-Cas9 mediated precise correction. Med Hypotheses 110:97–100. https://doi.org/10.1016/j.mehy.2017.11.009

    Article  CAS  PubMed  Google Scholar 

  66. Long C, McAnally JR, Shelton JM, Mireault AA, Bassel-Duby R, Olson EN (2014) Prevention of muscular dystrophy in mice by CRISPR/Cas9–mediated editing of germline DNA. Science 345(6201):1184–1188. https://doi.org/10.1126/science.1254445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Emami MR, Young CS, Ji Y, Liu X, Mokhonova E, AD Pyle et al (2019) Polyrotaxane nanocarriers can deliver CRISPR/Cas9 plasmid to dystrophic muscle cells to successfully edit the DMD gene. Adv Ther 2(7):1900061. https://doi.org/10.1002/adtp.201900061

    Article  CAS  Google Scholar 

  68. Tabebordbar M, Zhu K, Cheng JK, Chew WL, Widrick JJ, Yan WX et al (2016) In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science 351(6271):407–411. https://doi.org/10.1126/science.aad5177

    Article  CAS  PubMed  Google Scholar 

  69. Roberston MJ, Raghunathan S, Potaman VN, Zhang F, Stewart MD, McConnell BK, Schwartz RJ (2020) CRISPR-Cas9–induced IGF1 gene activation as a tool for enhancing muscle differentiation via multiple isoform expression. FASEB J 34(1):555–570. https://doi.org/10.1096/fj.201901107RR

    Article  CAS  PubMed  Google Scholar 

  70. Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, Olson EN (2017) CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 3(4):e1602814.https://doi.org/10.1126/sciadv.1602814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fellows CR, Williams R, Davies IR, Gohil K, Baird DM, Fairclough J et al (2017) Characterisation of a divergent progenitor cell sub-populations in human osteoarthritic cartilage: the role of telomere erosion and replicative senescence. Sci Rep 7(1):1–11. https://doi.org/10.1038/srep41421

    Article  CAS  Google Scholar 

  72. Schuette HB, Kraeutler MJ, McCarty EC (2017) Matrix-assisted autologous chondrocyte transplantation in the knee: a systematic review of mid-to long-term clinical outcomes. Orthop J Sports Med. https://doi.org/10.1177/2325967117709250

    Article  PubMed  PubMed Central  Google Scholar 

  73. D’Costa S, Rich MJ, Diekman BO (2020) Engineered cartilage from human chondrocytes with homozygous knockout of cell cycle inhibitor p21. Tissue Eng A 26(7–8):441–449. https://doi.org/10.1089/ten.TEA.2019.0214

    Article  Google Scholar 

  74. Karlsen TA, Pernas PF, Staerk J, Caglayan S, Brinchmann JE (2016) Generation of IL1β-resistant chondrocytes using CRISPR-CAS genome editing. Osteoarthr Cartil 24:S325. https://doi.org/10.1016/j.joca.2016.01.581

    Article  Google Scholar 

  75. Cao A, Kan YW (2013) The prevention of thalassemia. Cold Spring Harbor Perspect Med. https://doi.org/10.1101/cshperspect.a011775

    Article  Google Scholar 

  76. Yang Y, Zhang X, Yi L, Hou Z, Chen J, Kou X, Gao S (2016) Native induced pluripotent stem cells generated from b-thalassemia fibroblasts allow efficient gene correction with CRISPR/Cas9. Stem Cells Transl Med. https://doi.org/10.5966/sctm.2015-0157

    Article  PubMed  PubMed Central  Google Scholar 

  77. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F et al (2010) Transfusion independence and HMGA2 activation after gene therapy of humanβ-thalassaemia. Nature 467(7313):318–322

    Article  CAS  Google Scholar 

  78. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature 317(6034):230–234. https://doi.org/10.1038/317230a0

    Article  CAS  PubMed  Google Scholar 

  79. Xie F, Ye L, Chang JC, Beyer AI, Wang J, Muench MO, Kan YW (2014) Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggyBac. Genome Res 24(9):1526–1533. https://doi.org/10.1101/gr.173427.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Harambat J, Fargue S, Acquaviva C, Gagnadoux MF, Janssen F, Liutkus A et al (2010) Genotype–phenotype correlation in primary hyperoxaluria type 1: the p. Gly170Arg AGXT mutation is associated with a better outcome. Kidney international 77(5):443–449. https://doi.org/10.1038/ki.2009.435

    Article  CAS  PubMed  Google Scholar 

  81. Bergstralh EJ, Monico CG, Lieske JC, Herges RM, Langman CB, Hoppe B et al (2010) Transplantation outcomes in primary hyperoxaluria. Am J Transpl 10(11):2493–2501. https://doi.org/10.1111/j.1600-6143.2010.03271.x

    Article  CAS  Google Scholar 

  82. Salido EC, Li XM, Lu Y, Wang X, Santana A, Roy-Chowdhury N et al (2006) Alanine–glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Proc Natl Acad Sci USA 103(48):18249–18254. https://doi.org/10.1073/pnas.0607218103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Squires JE, Soltys KA, McKiernan P, Squires RH, Strom SC, Fox IJ, Soto-Gutierrez A (2017) Clinical hepatocyte transplantation: what is next? Curr Trans Rep 4(4):280–289. https://doi.org/10.1007/s40472-017-0165-6

    Article  Google Scholar 

  84. Mc Kiernan PJ (2017) Recent advances in liver transplantation for metabolic disease. J Inherit Metab Dis 40(4):491–495. https://doi.org/10.1007/s10545-017-0020-z

    Article  CAS  PubMed  Google Scholar 

  85. Estève J, Blouin JM, Lalanne M, Azzi-Martin L, Dubus P, Bidet A et al (2019) Targeted gene therapy in human-induced pluripotent stem cells from a patient with primary hyperoxaluria type 1 using CRISPR/Cas9 technology. Biochem Biophys Res Commun 517(4):677–683. https://doi.org/10.1016/j.bbrc.2019.07.109

    Article  CAS  PubMed  Google Scholar 

  86. Estève J, Blouin JM, Lalanne M, Azzi-Martin L, Dubus P, Bidet A et al (2019) Generation of induced pluripotent stem cells-derived hepatocyte-like cells for ex vivo gene therapy of primary hyperoxaluria type 1. Stem Cell Res. https://doi.org/10.1016/j.scr.2019.101467

    Article  PubMed  Google Scholar 

  87. Dekkers JF, Wiegerinck CL, De Jonge HR, Bronsveld I, Janssens HM, De Winter-de Groot KM et al (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19(7):939–945. https://doi.org/10.1038/nm.3201

    Article  CAS  PubMed  Google Scholar 

  88. Riordan JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Grzelczak Z et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922):1066–1073. https://doi.org/10.1126/science.2475911

    Article  CAS  PubMed  Google Scholar 

  89. Firth AL, Menon T, Parker GS, Qualls SJ, Lewis BM, Ke E et al (2015) Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 12(9):1385–1390. https://doi.org/10.1016/j.celrep.2015.07.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, Demircan T et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13(6):653–658. https://doi.org/10.1016/j.stem.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  91. Crane AM, Kramer P, Bui JH, Chung WJ, Li XS, Gonzalez-Garay ML et al (2015) Targeted correction and restored function of the CFTR gene in cystic fibrosis induced pluripotent stem cells. Stem Cell Rep 4(4):569–577. https://doi.org/10.1016/j.stemcr.2015.02.005

    Article  CAS  Google Scholar 

  92. Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK et al (2021) CRISPR-Cas9 gene editing for sickle cell disease andβ-thalassemia. N Engl J Med 384(3):252–260. https://doi.org/10.1056/NEJMoa2031054

    Article  CAS  PubMed  Google Scholar 

  93. Wei T, Cheng Q, Farbiak L, Anderson DG, Langer R, Siegwart DJ (2020) Delivery of tissue-targeted scalpels: opportunities and challenges for in vivo CRISPR/Cas-based genome editing. ACS Nano 14(8):9243–9262. https://doi.org/10.1021/acsnano.0c04707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhao J, Song Y, Liu D (2019) Clinical trials of dual-target CAR T cells, donor-derived CAR T cells, and universal CAR T cells for acute lymphoid leukemia. J Hematol Oncol 12(1):1–11. doi:https://doi.org/10.1186/s13045-019-0705-x

    Article  Google Scholar 

  95. Karapurkar JK, Antao AM, Kim KS, Ramakrishna S (2021) CRISPR-Cas9 based genome editing for defective gene correction in humans and other mammals. Prog Mol Biol Transl Sci 181:185–229. https://doi.org/10.1016/bs.pmbts.2021.01.018

    Article  CAS  PubMed  Google Scholar 

  96. Mckiver B, Damaj MI, Sarkar D (2020) Assessment of current gene therapy practices in hepatocellular carcinoma. Gastrointest Disord 2(4):469–480. https://doi.org/10.3390/gidisord2040042

    Article  Google Scholar 

  97. Lai Y, Babunovic GH, Cui L, Dedon PC, Doench JG, Fortune SM, Lu TK (2020) Illuminating host-mycobacterial interactions with genome-wide crispr knockout and CRISPRi screens. Cell Syst 11(3):239–251. https://doi.org/10.1016/j.cels.2020.08.010

    Article  CAS  PubMed  Google Scholar 

  98. Moghadam F, LeGraw R, Velazquez JJ, Yeo NC, Xu C, Park J et al (2020) Synthetic immunomodulation with a CRISPR super-repressor in vivo. Nat Cell Biol 22(9):1143–1154. https://doi.org/10.1038/s41556-020-0563-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hendriks D, Artegiani B, Hu H, de Sousa Lopes SC, Clevers H (2021) Establishment of human fetal hepatocyte organoids and CRISPR–Cas9-based gene knockin and knockout in organoid cultures from human liver. Nat Protoc 16(1):182–217. doi:https://doi.org/10.1038/s41596-020-00411-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to The Management of Sri Venkateswara College of Engineering, Sriperumbudur, Chennai, Tamil Nadu, India, Management of Sree Sastha Institute of Engineering and Technology, Chembarambakkam, Chennai, Tamil Nadu, India and The Management, Vice Chancellor, Dean of SMNS and Head of Biological Sciences, The Copperbelt University, Kitwe, Zambia for their constant support to complete the review article.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SDK, MA and GK: literature collection, writing—original draft, Methodology, Resources. RS and MS: conceptualization, supervision, validation, writing—review & editing for the final version manuscript.

Corresponding author

Correspondence to Muthupandian Saravanan.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors read and approved the final manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dilip Kumar, S., Aashabharathi, M., KarthigaDevi, G. et al. Insights of CRISPR-Cas systems in stem cells: progress in regenerative medicine. Mol Biol Rep 49, 657–673 (2022). https://doi.org/10.1007/s11033-021-06832-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06832-w

Keywords

Navigation