Skip to main content

Advertisement

Log in

Estrogenic hormones receptors in Alzheimer’s disease

  • Mini Review Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Estrogens are hormones that play a critical role during development and growth for the adequate functioning of the reproductive system of women, as well as for maintaining bones, metabolism, and cognition. During menopause, the levels of estrogens are decreased, altering their signaling mediated by their intracellular receptors such as estrogen receptor alpha and beta (ERα and ERβ), and G protein-coupled estrogen receptor (GPER). In the brain, the reduction of molecular pathways mediated by estrogenic receptors seems to favor the progression of Alzheimer’s disease (AD) in postmenopausal women. In this review, we investigate the participation of estrogen receptors in AD in women during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

AD:

Alzheimer’s disease

AF-1:

Activation function 1

AF-2:

Activation function 2

APP/PS1:

Amyloid precursor protein/presenilin1

Aβ:

β-amyloid

CHO:

Cholesterol

DBD:

DNA-binding domain

DES:

Desmosterol

DHCR24:

3-Beta-hydroxysterol delta-24-reductase

E2:

Estradiol

EB:

Estradiol-benzoate

EGF:

Epidermal growth factor

ERα:

Estrogen receptor alpha

ERβ:

Estrogen receptor beta

GPER:

G-protein-coupled estrogen receptor

GPR30:

G-protein-coupled receptor

IGF:

Insulin-like growth factor

LBD:

Ligand-binding domain

NFTs:

Neurofibrillary tangles

Pel:

Pelargonidin

PU:

Puerarin

SERMs:

Selective estrogen receptor modulators

UBC9:

Sumo-conjugating enzyme 9

References

  1. Halliday G (2017) Pathology and hippocampal atrophy in Alzheimer’s disease. The Lancet Neurol. https://doi.org/10.1016/S1474-4422(17)30343-5

    Article  PubMed  Google Scholar 

  2. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL (2015) Alzheimer’s disease. Nat Rev Dis Primers. https://doi.org/10.1038/nrdp.2015.56

    Article  PubMed  Google Scholar 

  3. Stoccoro A, Coppedè F (2018) Role of epigenetics in Alzheimer’s disease pathogenesis. Neurodegener Dis Manag. https://doi.org/10.2217/nmt-2018-0004

    Article  PubMed  Google Scholar 

  4. Cuanalo-Contreras K, Moreno-Gonzalez I (2019) Natural products as modulators of the proteostasis machinery: implications in neurodegenerative diseases. Int J Mol Sci. https://doi.org/10.3390/ijms20194666

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cheng J, North BJ, Zhang T, Dai X, Tao K, Guo J, Wei W (2018) The emerging roles of protein homeostasis-governing pathways in Alzheimer’s disease. Aging Cell. https://doi.org/10.1111/acel.12801

    Article  PubMed  PubMed Central  Google Scholar 

  6. Höhn A, Tramutola A, Cascella R (2020) Proteostasis failure in neurodegenerative diseases: focus on oxidative stress. Oxidative Med Cell Longev. https://doi.org/10.1155/2020/5497046

    Article  Google Scholar 

  7. Hariri L, Rehman A (2021) Estradiol. In StatPearls. StatPearls Publishing

  8. Thomas MP, Potter BVL (2013) The structural biology of oestrogen metabolism. J Steroid Biochem Mol Biol. https://doi.org/10.1016/j.jsbmb.2012.12.014

    Article  PubMed  PubMed Central  Google Scholar 

  9. Birzniece V, Ho KKY (2021) Mechanisms in endocrinology: paracrine and endocrine control of the growth hormone axis by estrogen. Eur J Endocrinol. https://doi.org/10.1530/EJE-21-0155

    Article  PubMed  Google Scholar 

  10. McCarthy M, Raval AP (2020) The peri-menopause in a woman’s life: a systemic inflammatory phase that enables later neurodegenerative disease. J Neuroinflamm. https://doi.org/10.1186/s12974-020-01998-9

    Article  Google Scholar 

  11. Marongiu R (2019) Accelerated ovarian failure as a unique model to study peri-menopause influence on Alzheimer’s disease. Front Aging Neurosci. https://doi.org/10.3389/fnagi.2019.00242

    Article  PubMed  PubMed Central  Google Scholar 

  12. Liu YX, Zhang Y, Li YY, Liu XM, Wang XX, Zhang CL, Hao CF, Deng SL (2019) Regulation of follicular development and differentiation by intra-ovarian factors and endocrine hormones. Front Biosci-Landmark. https://doi.org/10.2741/4763

    Article  Google Scholar 

  13. Mal R, Magner A, David J, Datta J, Vallabhaneni M, Kassem M, Manouchehri J, Willingham N, Stover D, Vandeusen J, Sardesai S, Williams N, Wesolowski R, Lustberg M, Ganju RK, Ramaswamy B, Cherian MA (2020) Estrogen receptor beta (ERβ): a ligand activated tumor suppressor. Front Oncol. https://doi.org/10.3389/fonc.2020.587386

    Article  PubMed  PubMed Central  Google Scholar 

  14. Talarowska ME, Szemraj J, Kuan-Pin S (2019) Expression of ESR1 and ESR2 oestrogen receptor encoding gene and personality traits—preliminary study. Przeglad Menopauzalny. https://doi.org/10.5114/pm.2019.90804

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tecalco-Cruz AC, Pérez-Alvarado IA, Ramírez-Jarquín JO, Rocha-Zavaleta L (2017) Nucleo-cytoplasmic transport of estrogen receptor alpha in breast cancer cells. Cell Signal. https://doi.org/10.1016/j.cellsig.2017.03.011

    Article  PubMed  Google Scholar 

  16. Métivier R, Penot G, Flouriot G, Pakdel F (2001) Synergism between ERα transactivation function 1 (AF-1) and AF-2 mediated by steroid receptor coactivator protein-1: requirement for the AF-1 α-helical core and for a direct interaction between the N- and C-terminal domains. Mol Endocrinol. https://doi.org/10.1210/mend.15.11.0727

    Article  PubMed  Google Scholar 

  17. Ascenzi P, Bocedi A, Marino M (2006) Structure-function relationship of estrogen receptor α and β: Impact on human health. Mol Aspects Med. https://doi.org/10.1016/j.mam.2006.07.001

    Article  PubMed  Google Scholar 

  18. Barnes CJ, Vadlamudi RK, Kumar R (2004) Novel estrogen receptor coregulators and signaling molecules in human diseases. Cell Mol Life Sci. https://doi.org/10.1007/s00018-003-3222-5

    Article  PubMed  Google Scholar 

  19. Klinge CM, Jernigan SC, Mattingly KA, Risinger KE, Zhang J (2004) Estrogen response element-dependent regulation of transcriptional activation of estrogen receptors α and β by coactivators and corepressor. J Mol Endocrinol. https://doi.org/10.1677/jme.1.01541

    Article  PubMed  Google Scholar 

  20. Björnström L, Sjöberg M (2004) Estrogen receptor-dependent activation of AP-1 via non-genomic signalling. Nuclear Recept. https://doi.org/10.1186/1478-1336-2-3

    Article  Google Scholar 

  21. Frasor J, Weaver A, Pradhan M, Dai Y, Miller LD, Lin CY, Stanculescu A (2009) Positive cross-talk between estrogen receptor and NF-κB in breast cancer. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-09-2608

    Article  PubMed  PubMed Central  Google Scholar 

  22. Madeira M, Mattar A, Logullo ÂF, Soares FA, Gebrim LH (2013) Estrogen receptor alpha/beta ratio and estrogen receptor beta as predictors of endocrine therapy responsiveness-a randomized neoadjuvant trial comparison between anastrozole and tamoxifen for the treatment of postmenopausal breast cancer. BMC Cancer. https://doi.org/10.1186/1471-2407-13-425

    Article  PubMed  PubMed Central  Google Scholar 

  23. Acconcia F, Ascenzi P, Fabozzi G, Visca P, Marino M (2004) S-palmitoylation modulates human estrogen receptor-α functions. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2004.02.129

    Article  PubMed  Google Scholar 

  24. Levin ER (2015) Extranuclear steroid receptors are essential for steroid hormone actions. Annu Rev Med. https://doi.org/10.1146/annurev-med-050913-021703

    Article  PubMed  Google Scholar 

  25. Lu Q, Pallas DC, Surks HK, Baur WE, Mendelsohn ME, Karas RH (2004) Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by estrogen receptor α. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0407492101

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kato S (2001) Estrogen receptor-mediated cross-talk with growth factor signaling pathways. Breast Cancer 8:3–9. https://doi.org/10.1007/BF02967472

    Article  CAS  PubMed  Google Scholar 

  27. Lee AV, Cui X, Oesterreich S (2001) Cross-talk among estrogen receptor, epidermal growth factor, and insulin-like growth factor signaling in breast cancer. Clin Cancer Res 7:4338s–4342s

    Google Scholar 

  28. Schiff R, Massarweh SA, Shou J, Bharwani L, Mohsin SK, Osborne CK, Nicholson R, Ellis M, Santen R, Brown M (2004) Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res. https://doi.org/10.1158/1078-0432.CCR-031212

    Article  PubMed  Google Scholar 

  29. Moore JT, McKee DD, Slentz-Kesler K, Moore LB, Jones SA, Horne EL, Su JL, Kliewer SA, Lehmann JM, Willson TM (1998) Cloning and characterization of human estrogen receptor β isoforms. Biochem Biophys Res Commun. https://doi.org/10.1006/bbrc.1998.8738

    Article  PubMed  Google Scholar 

  30. Wu W, Niles EG, Hirai H, LoVerde PT (2007) Evolution of a novel subfamily of nuclear receptors with members that each contain two DNA binding domains. BMC Evol Biol. https://doi.org/10.1186/1471-2148-7-27

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fuentes N, Silveyra P (2019) Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol. https://doi.org/10.1016/bs.apcsb.2019.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  32. Soltysik K, Czekaj P (2013) Membrane estrogen receptors - is it an alternative way of estrogen action? J Physiol Pharmacol 64:129–142

    CAS  PubMed  Google Scholar 

  33. Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, Visca P, Marino M (2005) Palmitoylation-dependent estrogen receptor α membrane localization: regulation by 17β-estradiol. Mol Biol Cell. https://doi.org/10.1091/mbc.E04-07-0547

    Article  PubMed  PubMed Central  Google Scholar 

  34. Acconcia F, Kumar R (2006) Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett. https://doi.org/10.1016/j.canlet.2005.06.018

    Article  PubMed  Google Scholar 

  35. Yue J, Wang XS, Feng B, Hu LN, Yang LK, Lu L, Zhang K, Wang YT, Liu SB (2019) Activation of G-protein-coupled receptor 30 protects neurons against excitotoxicity through inhibiting excessive autophagy induced by glutamate. ACS Chem Neurosci 10:1. https://doi.org/10.1021/acschemneuro.9b00287

    Article  CAS  Google Scholar 

  36. Zhou X, Wang S, Wang Z, Feng X, Liu P, Lv XB, Li F, Yu FX, Sun Y, Yuan H, Zhu H, Xiong Y, Lei QY, Guan KL (2015) Estrogen regulates Hippo signaling via GPER in breast cancer. J Clin Investig. https://doi.org/10.1172/JCI79573

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kelly MJ, Levin ER (2001) Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab. https://doi.org/10.1016/S1043-2760(01)00377-0

    Article  PubMed  Google Scholar 

  38. Poola I, Abraham J, Liu A, Marshalleck JJ, Dewitty RL (2008) The cell surface estrogen receptor, G protein- coupled receptor 30 (GPR30), is markedly down regulated during breast tumorigenesis. Breast Cancer. https://doi.org/10.4137/bcbcr.s557

    Article  PubMed  PubMed Central  Google Scholar 

  39. Abo-Youssef AM, Khallaf WA, Khattab MM, Messiha BAS (2020) The anti-Alzheimer effect of telmisartan in a hyperglycemic ovariectomized rat model; role of central angiotensin and estrogen receptors. Food Chem Toxicol. https://doi.org/10.1016/j.fct.2020.111441

    Article  PubMed  Google Scholar 

  40. Agca C, Klakotskaia D, Stopa EG, Schachtman TR, Agca Y (2020) Ovariectomy influences cognition and markers of Alzheimer’s disease. J Alzheimer’s Dis 73:529–541. https://doi.org/10.3233/JAD-190935

    Article  CAS  Google Scholar 

  41. Balit T, Abdel-Wahhab MA, Radenahmad N (2019) Young coconut juice reduces some histopathological changes associated with Alzheimer’s disease through the modulation of estrogen receptors in orchidectomized rat brains. J Aging Res. https://doi.org/10.1155/2019/7416419

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hua X, Lei M, Ding J, Han Q, Hu G, Xiao M (2008) Pathological and biochemical alterations of astrocytes in ovariectomized rats injected with d-galactose: a potential contribution to Alzheimer’s disease processes. Exp Neurol. https://doi.org/10.1016/j.expneurol.2008.01.009

    Article  PubMed  PubMed Central  Google Scholar 

  43. Honma N, Saji S, Mikami T, Yoshimura N, Mori S, Saito Y, Murayama S, Harada N (2017) Estrogen-related factors in the frontal lobe of Alzheimer’s disease patients and importance of body mass index. Sci Rep. https://doi.org/10.1038/s41598-017-00815-3

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wei Y, Zhou J, Wu J, Huang J (2019) ERβ promotes Aβ degradation via the modulation of autophagy. Cell Death Dis 10:1. https://doi.org/10.1038/s41419-019-1786-8

    Article  CAS  Google Scholar 

  45. Pedram A, Razandi M, Aitkenhead M, Hughes CCW, Levin ER (2002) Integration of the non-genomic and genomic actions of estrogen: Membrane-initiated signaling by steroid to transcription and cell biology. J Biol Chem. https://doi.org/10.1074/jbc.M210106200

    Article  PubMed  Google Scholar 

  46. Acconcia F, Marino M (2003) Synergism between genomic and non genomic estrogen action mechanisms. IUBMB Life. https://doi.org/10.1080/1521654031000110172

    Article  PubMed  Google Scholar 

  47. Peri A, Serio M (2008) Neuroprotective effects of the Alzheimer’s disease-related gene seladin-1. J Mol Endocrinol. https://doi.org/10.1677/JME-08-0071

    Article  PubMed  Google Scholar 

  48. Iivonen S, Hiltunen M, Alafuzoff I, Mannermaa A, Kerokoski P, PuolivÄli J, Salminen A, Helisalmi S, Soininen H (2002) Seladin-1 transcription is linked to neuronal degeneration in Alzheimer’s disease. Neuroscience. https://doi.org/10.1016/S0306-4522(02)00180-X

    Article  PubMed  Google Scholar 

  49. Sato Y, Bernier F, Yamanaka Y, Aoshima K, Oda Y, Ingelsson M, Lannfelt L, Miyashita A, Kuwano R, Ikeuchi T (2015) Reduced plasma desmosterol-to-cholesterol ratio and longitudinal cognitive decline in Alzheimer’s disease, Alzheimer’s and dementia: diagnosis. Assess Dis Monit. https://doi.org/10.1016/j.dadm.2014.11.009

    Article  Google Scholar 

  50. Kumar A, Foster TC (2020) G protein-coupled estrogen receptor: rapid effects on Hippocampal-dependent spatial memory and synaptic plasticity. Front Endocrinol. https://doi.org/10.3389/fendo.2020.00385

    Article  Google Scholar 

  51. Prossnitz ER (2012) G protein-coupled estrogen receptor: a new therapeutic target in stroke and traumatic brain/spinal cord injury? Crit Care Med. https://doi.org/10.1097/CCM.0b013e31826be998

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kubota T, Matsumoto H, Kirino Y (2016) Ameliorative effect of membrane-associated estrogen receptor G protein coupled receptor 30 activation on object recognition memory in mouse models of Alzheimer’s disease. J Pharmacol Sci. https://doi.org/10.1016/j.jphs.2016.06.005

    Article  PubMed  Google Scholar 

  53. Lai YJ, Liu L, Hu XT, He L, Chen GJ (2017) Estrogen modulates ubc9 expression and synaptic redistribution in the brain of APP/PS1 mice and cortical neurons. J Mol Neurosci. https://doi.org/10.1007/s12031-017-0884-2

    Article  PubMed  Google Scholar 

  54. Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jäggi F, Wolburg H, Gengler S, Haass C, Ghetti B, Czech C, Hölscher C, Mathews PM, Jucker M (2006) Aβ42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. https://doi.org/10.1038/sj.embor.7400784

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gu C, Chen C, Wu R, Dong T, Hu X, Yao Y, Zhang Y (2018) Long noncoding RNA EBF3-AS promotes neuron apoptosis in Alzheimer’s disease. DNA Cell Biol. https://doi.org/10.1089/dna.2017.4012

    Article  PubMed  Google Scholar 

  56. Chen JR, Yan YT, Wang TJ, Chen LJ, Wang YJ, Tseng GF (2009) Gonadal hormones modulate the dendritic spine densities of primary cortical pyramidal neurons in adult female rat. Cereb Cortex. https://doi.org/10.1093/cercor/bhp048

    Article  PubMed  PubMed Central  Google Scholar 

  57. Tang Y, Janssen WGM, Hao J, Roberts JA, McKay H, Lasley B, Allen PB, Greengard P, Rapp PR, Kordower JH, Hof PR, Morrisonn JH (2004) Estrogen replacement increases Spinophilin-immunoreactive spine number in the prefrontal cortex of female rhesus monkeys. Cereb Cortex. https://doi.org/10.1093/cercor/bhg121

    Article  PubMed  Google Scholar 

  58. Khan MM, Dhandapani KM, Zhang QG, Brann DW (2013) Estrogen regulation of spine density and excitatory synapses in rat prefrontal and somatosensory cerebral cortex. Steroids. https://doi.org/10.1016/j.steroids.2012.12.005

    Article  PubMed  Google Scholar 

  59. de Castilhos J, Forti CD, Achaval M, Rasia-Filho AA (2008) Dendritic spine density of posterodorsal medial amygdala neurons can be affected by gonadectomy and sex steroid manipulations in adult rats: a Golgi study. Brain Res. https://doi.org/10.1016/j.brainres.2008.09.002

    Article  PubMed  Google Scholar 

  60. Gould E, Woolley CS, Frankfurt M, McEwen BS (1990) Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J Neurosci. https://doi.org/10.1523/jneurosci.10-04-01286.1990

    Article  PubMed  PubMed Central  Google Scholar 

  61. Woolley CS, Gould E, Frankfurt M, McEwen BS (1990) Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci. https://doi.org/10.1523/jneurosci.10-12-04035.1990

    Article  PubMed  PubMed Central  Google Scholar 

  62. Woolley CS, McEwen BS (1993) Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. J Comp Neurol. https://doi.org/10.1002/cne.903360210

    Article  PubMed  Google Scholar 

  63. Murakami G, Tsurugizawa T, Hatanaka Y, Komatsuzaki Y, Tanabe N, Mukai H, Hojo Y, Kominami S, Yamazaki T, Kimoto T, Kawato S (2006) Comparison between basal and apical dendritic spines in estrogen-induced rapid spinogenesis of CA1 principal neurons in the adult hippocampus. Biochem Biophys Res Commun. https://doi.org/10.1016/j.bbrc.2006.10.066

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mukai H, Tsurugizawa T, Murakami G, Kominami S, Ishii H, Ogiue-Ikeda M, Takata N, Tanabe N, Furukawa A, Hojo Y, Ooishi Y, Morrison JH, Janssen WGM, Rose JA, Chambon P, Kato S, Izumi S, Yamazaki T, Kimoto T, Kawato S (2007) Rapid modulation of long-term depression and spinogenesis via synaptic estrogen receptors in hippocampal principal neurons. J Neurochem. https://doi.org/10.1111/j.1471-4159.2006.04264.x

    Article  PubMed  Google Scholar 

  65. Phan A, Gabor CS, Favaro KJ, Kaschack S, Armstrong JN, MacLusky NJ, Choleris E (2012) Low doses of 17β-estradiol rapidly improve learning and increase hippocampal dendritic spines. Neuropsychopharmacology. https://doi.org/10.1038/npp.2012.82

    Article  PubMed  PubMed Central  Google Scholar 

  66. Phan A, Lancaster KE, Armstrong JN, MacLusky NJ, Choleris E (2011) Rapid effects of estrogen receptor α and β selective agonists on learning and dendritic spines in female mice. Endocrinology. https://doi.org/10.1210/en.2010-1273

    Article  PubMed  Google Scholar 

  67. Gabor C, Lymer J, Phan A, Choleris E (2015) Rapid effects of the G-protein coupled oestrogen receptor (GPER) on learning and dorsal hippocampus dendritic spines in female mice. Physiol Behav. https://doi.org/10.1016/j.physbeh.2015.05.017

    Article  PubMed  Google Scholar 

  68. Jacome LF, Barateli K, Buitrago D, Lema F, Frankfurt M, Luine VN (2016) Gonadal hormones rapidly enhance spatial memory and increase hippocampal spine density in male rats. Endocrinology. https://doi.org/10.1210/en.2015-1959

    Article  PubMed  PubMed Central  Google Scholar 

  69. Phan A, Suschkov S, Molinaro L, Reynolds K, Lymer JM, Bailey CDC, Kow LM, Maclusky NJ, Pfaff DW, Choleris E (2015) Rapid increases in immature synapses parallel estrogen-induced hippocampal learning enhancements. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1522150112

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tuscher JJ, Luine V, Frankfurt M, Frick KM (2016) Estradiol-mediated spine changes in the dorsal hippocampus and medial prefrontal cortex of ovariectomized female mice depend on ERK and mTOR activation in the dorsal hippocampus. J Neurosci. https://doi.org/10.1523/JNEUROSCI.3135-15.2016

    Article  PubMed  PubMed Central  Google Scholar 

  71. MacLusky NJ, Luine VN, Hajszan T, Leranth C (2005) The 17α and 17β isomers of estradiol both induce rapid spine synapse formation in the Ca1 hippocampal subfield of ovariectomized female rats. Endocrinology. https://doi.org/10.1210/en.2004-0730

    Article  PubMed  Google Scholar 

  72. Srivastava DP, Woolfrey K, Jones KA, Shum CY, Lash LL, Swanson GT, Penzes P (2008) Rapid enhancement of two-step wiring plasticity by estrogen and NMDA receptor activity. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0801581105

    Article  PubMed  PubMed Central  Google Scholar 

  73. Sellers KJ, Erli F, Raval P, Watson IA, Chen D, Srivastava DP (2015) Rapid modulation of synaptogenesis and spinogenesis by 17β-estradiol in primary cortical neurons. Front Cell Neurosci. https://doi.org/10.3389/fncel.2015.00137

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sellers K, Raval P, Srivastava DP (2015) Molecular signature of rapid estrogen regulation of synaptic connectivity and cognition. Front Neuroendocrinol. https://doi.org/10.1016/j.yfrne.2014.08.001

    Article  PubMed  Google Scholar 

  75. Lymer JM, Sheppard PAS, Kuun T, Blackman A, Jani N, Mahbub S, Choleris E (2018) Estrogens and their receptors in the medial amygdala rapidly facilitate social recognition in female mice. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2017.12.021

    Article  PubMed  Google Scholar 

  76. Mahmoud R, Wainwright SR, Galea LAM (2016) Sex hormones and adult hippocampal neurogenesis: regulation, implications, and potential mechanisms. Front Neuroendocrinol. https://doi.org/10.1016/j.yfrne.2016.03.002

    Article  PubMed  Google Scholar 

  77. Bean LA, Kumar A, Rani A, Guidi M, Rosario AM, Cruz PE, Golde TE, Foster TC (2015) Re-opening the critical window for estrogen therapy. J Neurosci. https://doi.org/10.1523/JNEUROSCI.1890-15.2015

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dall GV, Hawthorne S, Seyed-Razavi Y, Vieusseux J, Wu W, Gustafsson JA, Byrne D, Murphy L, Risbridger GP, Britt KL (2018) Estrogen receptor subtypes dictate the proliferative nature of the mammary gland. J Endocrinol. https://doi.org/10.1530/JOE-17-0582

    Article  PubMed  Google Scholar 

  79. Chi D, Singhal H, Li L, Xiao T, Liu W, Pun M, Jeselsohn R, He H, Lim E, Vadhi R, Rao P, Long H, Garber J, Brown M (2019) Estrogen receptor signaling is reprogrammed during breast tumorigenesis. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1819155116

    Article  PubMed  PubMed Central  Google Scholar 

  80. Zhou W, Srinivasan S, Nawaz Z, Slingerland JM (2014) ERα, SKP2 and E2F–1 form a feed forward loop driving late ERα targets and G1 cell cycle progression. Oncogene. https://doi.org/10.1038/onc.2013.197

    Article  PubMed  PubMed Central  Google Scholar 

  81. Chang BY, Kim SA, Malla B, Kim SY (2011) The effect of selective estrogen receptor modulators (serms) on the tamoxifen resistant breast cancer cells. Toxicol Res. https://doi.org/10.5487/TR.2011.27.2.085

    Article  PubMed  PubMed Central  Google Scholar 

  82. Tecalco-Cruz AC, Ramírez-Jarquín JO, Cruz-Ramos E (2018) Estrogen receptor alpha and its ubiquitination in breast cancer cells. Curr Drug Targets. https://doi.org/10.2174/1389450119666181015114041

    Article  Google Scholar 

  83. Pandey D, Banerjee S, Basu M, Mishra N (2016) Memory enhancement by Tamoxifen on amyloidosis mouse model. Hormones Behav. https://doi.org/10.1016/j.yhbeh.2015.09.004

    Article  Google Scholar 

  84. Branigan GL, Soto M, Neumayer L, Rodgers K, Brinton RD (2020) Association between hormone-modulating breast cancer therapies and incidence of neurodegenerative outcomes for women with breast cancer. JAMA Network Open. https://doi.org/10.1001/jamanetworkopen.2020.1541

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hansdóttir H (2008) Raloxifene for older women: a review of the literature. Clin Intervent Aging. https://doi.org/10.2147/cia.s224

    Article  Google Scholar 

  86. Muchmore DB (2000) Raloxifene: a selective estrogen receptor modulator (SERM) with multiple target system effects. The Oncologist. https://doi.org/10.1634/theoncologist.5-5-388

    Article  PubMed  Google Scholar 

  87. Liu Z, Wang Y, Qin W, Chen D, Feng Y, Su H, Shao W, Zhou B, Bu X (2019) Raloxifene alleviates amyloid-β-induced cytotoxicity in HT22 neuronal cells via inhibiting oligomeric and fibrillar species formation. J Biochem Mol Toxicol. https://doi.org/10.1002/jbt.22395

    Article  PubMed  Google Scholar 

  88. Ismailoglu O, Oral B, Sütcü R, Kara Y, Tomruk O, Demir N (2013) Neuroprotective effects of raloxifene on experimental spinal cord injury in rats. Am J Med Sci. https://doi.org/10.1097/MAJ.0b013e3182522651

    Article  PubMed  Google Scholar 

  89. Karki P, Smith K, Johnson J, Lee E (2014) Astrocyte-derived growth factors and estrogen neuroprotection: role of transforming growth factor-α in estrogen-induced upregulation of glutamate transporters in astrocytes. Mol Cell Endocrinol. https://doi.org/10.1016/j.mce.2014.01.010

    Article  PubMed  PubMed Central  Google Scholar 

  90. Buckwalter JG, Geiger AM, Parsons TD, Handler J, Howes J, Lehmer RR (2007) Cognitive effects of short-term use of raloxifene: a randomized clinical trial. Int J Neurosci. https://doi.org/10.1080/00207450701239392

    Article  PubMed  Google Scholar 

  91. Deng LJ, Cheng C, Wu J, Wang CH, Zhou HB, Huang J (2017) Oxabicycloheptene sulfonate protects against β-amyloid-induced toxicity by activation of PI3K/Akt and ERK signaling pathways via GPER1 in C6 cells. Neurochem Res. https://doi.org/10.1007/s11064-017-2237-5

    Article  PubMed  Google Scholar 

  92. Anukulthanakorn K, Parhar IS, Jaroenporn S, Kitahashi T, Watanbe G, Malaivijitnond S (2016) Neurotherapeutic effects of Pueraria mirifica extract in early- and late-stage cognitive impaired rats. Phytother Res. https://doi.org/10.1002/ptr.5595

    Article  PubMed  Google Scholar 

  93. Li L, Xue Z, Chen L, Chen X, Wang H, Wang X (2017) Puerarin suppression of Aβ1–42-induced primary cortical neuron death is largely dependent on ERβ. Brain Res. https://doi.org/10.1016/j.brainres.2016.11.023

    Article  PubMed  PubMed Central  Google Scholar 

  94. Wang Y, Xia Z, Jiang X, Li L, Wang H, An D, Liu Y (2020) Genistein inhibits amyloid peptide 25–35-induced neuronal death by modulating estrogen receptors, choline acetyltransferase and glutamate receptors. Arch Biochem Biophys. https://doi.org/10.1016/j.abb.2020.108561

    Article  PubMed  Google Scholar 

  95. Tsai MC, Lin SH, Hidayah K, Lin CI (2019) Equol pretreatment protection of SH-SY5Y cells against Aβ (25–35)-induced cytotoxicity and cell-cycle reentry via sustaining estrogen receptor alpha expression. Nutrients. https://doi.org/10.3390/nu11102356

    Article  PubMed  PubMed Central  Google Scholar 

  96. Song X, Liu B, Cui L, Zhou B, Liu L, Liu W, Yao G, Xia M, Hayashi T, Hattori S, Ushiki-Kaku Y, IchiTashiro S, Ikejima T (2018) Estrogen receptors are involved in the neuroprotective effect of silibinin in Aβ1–42-treated rats. Neurochem Res. https://doi.org/10.1007/s11064-018-2481-3

    Article  PubMed  Google Scholar 

  97. Sohanaki H, Baluchnejadmojarad T, Nikbakht F, Roghani M (2016) Pelargonidin improves memory deficit in amyloid β25–35 rat model of Alzheimer’s disease by inhibition of glial activation, cholinesterase, and oxidative stress. Biomed Pharmacother. https://doi.org/10.1016/j.biopha.2016.06.021

    Article  PubMed  Google Scholar 

  98. Xing FZ, Zhao YG, Zhang YY, He L, Zhao JK, Liu MY, Liu Y, Zhang JQ (2018) Nuclear and membrane estrogen receptor antagonists induce similar mTORC2 activation-reversible changes in synaptic protein expression and actin polymerization in the mouse hippocampus. CNS Neurosci Ther. https://doi.org/10.1111/cns.12806

    Article  PubMed  PubMed Central  Google Scholar 

  99. Gray NE, Zweig JA, Kawamoto C, Quinn JF, Copenhaver PF (2016) STX, a novel membrane estrogen receptor ligand, protects against amyloid-β toxicity. J Alzheimer’s Dis. https://doi.org/10.3233/JAD-150756

    Article  Google Scholar 

  100. Petrie WK, Dennis MK, Hu C, Dai D, Arterburn JB, Smith HO, Hathaway HJ, Prossnitz ER (2013) G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth. Obstetr Gynecol Int. https://doi.org/10.1155/2013/472720

    Article  Google Scholar 

  101. Vivacqua A, Bonofiglio D, Albanito L, Madeo A, Rago V, Carpino A, Musti AM, Picard D, Andò S, Maggiolini M (2006) 17β-Estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the G protein-coupled receptor GPR30. Mol Pharmacol. https://doi.org/10.1124/mol.106.026344

    Article  PubMed  Google Scholar 

  102. Vivacqua A, Bonofiglio D, Recchia AG, Musti AM, Picard D, Andò S, Maggiolini M (2006) The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17β-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol. https://doi.org/10.1210/me.2005-0280

    Article  PubMed  Google Scholar 

  103. Thomas P, Pang Y, Filardo EJ, Dong J (2005) Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology. https://doi.org/10.1210/en.2004-1064

    Article  PubMed  Google Scholar 

  104. Dong S, Terasaka S, Kiyama R (2011) Bisphenol A induces a rapid activation of Erk1/2 through GPR30 in human breast cancer cells. Environ Pollut 15:9. https://doi.org/10.1016/j.envpol.2010.09.004

    Article  CAS  Google Scholar 

  105. Chevalier N, Bouskine A, Fenichel P (2012) Bisphenol A promotes testicular seminoma cell proliferation through GPER/GPR30. Int J Cancer. https://doi.org/10.1002/ijc.25972

    Article  PubMed  Google Scholar 

  106. Rowlands DJ, Chapple S, Siow RCM, Mann GE (2011) Equol-stimulated mitochondrial reactive oxygen species activate endothelial nitric oxide synthase and redox signaling in endothelial cells: roles for F-actin and GPR30. Hypertension. https://doi.org/10.1161/HYPERTENSIONAHA.110.162198

    Article  PubMed  Google Scholar 

  107. Luo J, Wang A, Zhen W, Wang Y, Si H, Jia Z, Alkhalidy H, Cheng Z, Gilbert E, Xu B, Liu D (2018) Phytonutrient genistein is a survival factor for pancreatic β-cells via GPR30-mediated mechanism. J Nutl Biochem. https://doi.org/10.1016/j.jnutbio.2018.04.018

    Article  Google Scholar 

  108. Maggiolini M, Vivacqua A, Fasanella G, Recchia AG, Sisci D, Pezzi V, Montanaro D, Musti AM, Picard D, Andò S (2004) The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17β-estradiol and phytoestrogens in breast cancer cells. J Biol Chem. https://doi.org/10.1074/jbc.M403588200

    Article  PubMed  Google Scholar 

  109. Lebesgue D, Traub M, De Butte-Smith M, Chen C, Zukin RS, Kelly MJ, Etgen AM (2010) Acute administration of non-classical estrogen receptor agonists attenuates ischemia-induced hippocampal neuron loss in middle-aged female rats. PLoS ONE. https://doi.org/10.1371/journal.pone.0008642

    Article  PubMed  PubMed Central  Google Scholar 

  110. Machado GDB, de Freitas BS, Florian LZ, Monteiro RT, Gus H, Schröder N (2019) G protein-coupled oestrogen receptor stimulation ameliorates iron- and ovariectomy-induced memory impairments through the cAMP/PKA/CREB signalling pathway. J Neuroendocrinol. https://doi.org/10.1111/jne.12780

    Article  PubMed  Google Scholar 

  111. Kumar A, Bean LA, Rani A, Jackson T, Foster TC (2015) Contribution of estrogen receptor subtypes, ERα, ERβ, and GPER1 in rapid estradiol-mediated enhancement of hippocampal synaptic transmission in mice. Hippocampus. https://doi.org/10.1002/hipo.22475

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hawley WR, Grissom EM, Moody NM, Dohanich GP, Vasudevan N (2014) Activation of G-protein-coupled receptor 30 is sufficient to enhance spatial recognition memory in ovariectomized rats. Behav Brain Res. https://doi.org/10.1016/j.bbr.2014.01.006

    Article  PubMed  Google Scholar 

  113. Hammond R, Nelson D, Kline E, Gibbs RB (2012) Chronic treatment with a GPR30 antagonist impairs acquisition of a spatial learning task in young female rats. Hormones Behav. https://doi.org/10.1016/j.yhbeh.2012.07.004

    Article  Google Scholar 

  114. Kim J, Szinte JS, Boulware MI, Frick KM (2016) 17β-Estradiol and agonism of g-protein-coupled estrogen receptor enhance hippocampal memory via different cell-signaling mechanisms. J Neurosci. https://doi.org/10.1523/JNEUROSCI.0257-15.2016

    Article  PubMed  PubMed Central  Google Scholar 

  115. Lymer J, Robinson A, Winters BD, Choleris E (2017) Rapid effects of dorsal hippocampal G-protein coupled estrogen receptor on learning in female mice. Psychoneuroendocrinology. https://doi.org/10.1016/j.psyneuen.2016.11.019

    Article  PubMed  Google Scholar 

  116. Kim J, Schalk JC, Koss WA, Gremminger RL, Taxier LR, Gross KS, Frick KM (2019) Dorsal hippocampal actin polymerization is necessary for activation of g-protein-coupled estrogen receptor (gper) to increase ca1 dendritic spine density and enhance memory consolidation. J Neurosci. https://doi.org/10.1523/JNEUROSCI.2687-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  117. Bian C, Zhu H, Zhao Y, Cai W, Zhang J (2014) Intriguing roles of hippocampus-synthesized 17β-estradiol in the modulation of hippocampal synaptic plasticity. J Mol Neurosci. https://doi.org/10.1007/s12031-014-0285-8

    Article  PubMed  Google Scholar 

  118. Frick KM (2015) Molecular mechanisms underlying the memory-enhancing effects of estradiol. Hormones Behav. https://doi.org/10.1016/j.yhbeh.2015.05.001

    Article  Google Scholar 

  119. Kwakowsky A, Potapov K, Kim S, Peppercorn K, Tate WP, Ábrahám IM (2016) Treatment of beta amyloid 1–42 (Aβ 1–42)-induced basal forebrain cholinergic damage by a non-classical estrogen signaling activator in vivo. Sci Rep. https://doi.org/10.1038/srep21101

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wnuk A, Przepiórska K, Rzemieniec J, Pietrzak B, Kajta M (2020) Selective targeting of non-nuclear estrogen receptors with PaPE-1 as a new treatment strategy for Alzheimer’s disease. Neurotox Res 38:957–966. https://doi.org/10.1007/s12640-020-00289-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Canerina-Amaro A, Hernandez-Abad LG, Ferrer I, Quinto-Alemany D, Mesa-Herrera F, Ferri C, Puertas-Avendaño RA, Diaz M, Marin R (2017) Lipid raft ER signalosome malfunctions in menopause and Alzheimer’s disease. Front Biosci Scholar. https://doi.org/10.2741/S476

    Article  Google Scholar 

  122. Henderson VW (2014) Alzheimer’s disease: review of hormone therapy trials and implications for treatment and prevention after menopause. J Steroid Biochem Mol Biol. https://doi.org/10.1016/j.jsbmb.2013.05.010

    Article  PubMed  Google Scholar 

  123. Boyle CP, Raji CA, Erickson KI, Lopez OL, Becker JT, Gach HM, Kuller LH, Longstreth W, Carmichael OT, Riedel BC, Thompson PM (2021) Estrogen, brain structure, and cognition in postmenopausal women. Hum Brain Mapp. https://doi.org/10.1002/hbm.25200

    Article  PubMed  Google Scholar 

  124. Rao CV (2017) Involvement of luteinizing hormone in Alzheimer disease development in elderly women. Reprod Sci. https://doi.org/10.1177/1933719116658705

    Article  PubMed  PubMed Central  Google Scholar 

  125. Chakrabarti M, Haque A, Banik NL, Nagarkatti P, Nagarkatti M, Ray SK (2014) Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration. Brain Res Bull. https://doi.org/10.1016/j.brainresbull.2014.09.004

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Alfonso Ramos Flores and Josué Orlando Ramíres Jarquín their assistance with this manuscript.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

ACT-C: designed the research, discussed, and integrated the information, and wrote the manuscript. JZ-C and BO-D: helped in the research and in the integration of information.

Corresponding author

Correspondence to Angeles C. Tecalco-Cruz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Consent to Participate (Ethics)

Not applicable.

Consent to Publish (Ethics)

Not applicable.

Ethics approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tecalco-Cruz, A.C., Zepeda–Cervantes, J. & Ortega-Domínguez, B. Estrogenic hormones receptors in Alzheimer’s disease. Mol Biol Rep 48, 7517–7526 (2021). https://doi.org/10.1007/s11033-021-06792-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06792-1

Keywords

Navigation