Skip to main content

Advertisement

Log in

PER2: a potential molecular marker for hematological malignancies

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Circadian rhythm is a periodic change of organism according to the law of external environment, which is manifested in metabolism, cell proliferation, physiology and behavior. In recent years, the role of circadian genes in the occurrence and progression of hematological malignancies have been continuously demonstrated. PER2 is the core component of the circadian rhythm playing an important role in regulating the circadian rhythm of the biological clock. This review summarizes the research progress of PER2 in hematological malignancies, especially leukemia, in order to better understand its role in hematological malignancies, and provide new ideas for clinical diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Albrecht U (2012) Timing to Perfection: The Biology of Central and Peripheral Circadian Clocks. Neuron 74(2):246–260. https://doi.org/10.1016/j.neuron.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  2. Kim P, Oster H, Lehnert H et al (2019) Coupling the Circadian Clock to Homeostasis: The Role of Period in Timing Physiology. Endocr Rev 40(1):66–95. https://doi.org/10.1210/er.2018-00049

    Article  PubMed  Google Scholar 

  3. Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24(2):90–99. https://doi.org/10.1016/j.tcb.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  4. Man AWC, Li H, Xia N (2021) Circadian rhythm: potential therapeutic target for atherosclerosis and thrombosis. Int J Mol Sci. https://doi.org/10.3390/ijms22020676

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mohawk JA, Green CB, Takahashi JS (2012) Central and Peripheral Circadian Clocks in Mammals. Annu Rev Neurosci 35(1):445–462. https://doi.org/10.1146/annurev-neuro-060909-153128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ch R, Rey G, Ray S et al (2021) Rhythmic glucose metabolism regulates the redox circadian clockwork in human red blood cells. Nat Commun 12(1):377. https://doi.org/10.1038/s41467-020-20479-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ikegami K, Refetoff S, Van Cauter E et al (2019) Interconnection between circadian clocks and thyroid function. Nat Rev Endocrinol 15(10):590–600. https://doi.org/10.1038/s41574-019-0237-z

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kettner NM, Katchy CA, Fu L (2014) Circadian gene variants in cancer. Ann Med 46(4):208–220. https://doi.org/10.3109/07853890.2014.914808

    Article  CAS  PubMed  Google Scholar 

  9. Masri S, Sassone-Corsi P (2018) The emerging link between cancer, metabolism, and circadian rhythms. Nat Med 24(12):1795–1803. https://doi.org/10.1038/s41591-018-0271-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Deshantri AK, Varela Moreira A, Ecker V et al (2018) Nanomedicines for the treatment of hematological malignancies. J Control Release 287:194–215. https://doi.org/10.1016/j.jconrel.2018.08.034

    Article  CAS  PubMed  Google Scholar 

  11. Bargiello TA, Jackson FR, Young MW (1984) Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312(5996):752–754. https://doi.org/10.1038/312752a0

    Article  CAS  PubMed  Google Scholar 

  12. Zhu L, Yu J, Zhang W et al (2014) Research progress on the central mechanism underlying regulation of visceral biological rhythm by per2. Mol Med Rep 10(5):2241–2248. https://doi.org/10.3892/mmr.2014.2559

    Article  CAS  PubMed  Google Scholar 

  13. Bargiello TA, Young MW (1984) Molecular genetics of a biological clock in Drosophila. Proc Natl Acad Sci USA 81(7):2142–2146. https://doi.org/10.1073/pnas.81.7.2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reddy P, Zehring WA, Wheeler DA et al (1984) Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38(3):701–710. https://doi.org/10.1016/0092-8674(84)90265-4

    Article  CAS  PubMed  Google Scholar 

  15. Kim M, de la Peña JB, Cheong JH et al (2018) Neurobiological functions of the period circadian clock 2 gene, Per2. Biomol Ther 26(4):358–367. https://doi.org/10.4062/biomolther.2017.131

    Article  CAS  Google Scholar 

  16. Kucera N, Schmalen I, Hennig S et al (2012) Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc Natl Acad Sci USA 109(9):3311–3316. https://doi.org/10.1073/pnas.1113280109

    Article  PubMed  PubMed Central  Google Scholar 

  17. Patke A, Young MW, Axelrod S (2019) Molecular mechanisms and physiological importance of circadian rhythms. Nat Rev Mol Cell Biol 21(2):67–84. https://doi.org/10.1038/s41580-019-0179-2

    Article  CAS  PubMed  Google Scholar 

  18. Chiou Y-Y, Li T-Y, Yang Y et al (2020) A Sextuple Knockout Cell Line System to Study the Differential Roles of CRY, PER, and NR1D in the Transcription-Translation Feedback Loop of the Circadian Clock. Front NeuroSci 14:616802. https://doi.org/10.3389/fnins.2020.616802

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cao X, Yang Y, Selby CP et al (2021) Molecular mechanism of the repressive phase of the mammalian circadian clock. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2021174118

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fu L, Kettner NM (2013) The circadian clock in cancer development and therapy. Prog Mol Biol Transl Sci 119:221–282. https://doi.org/10.1016/B978-0-12-396971-2.00009-9

    Article  PubMed  PubMed Central  Google Scholar 

  21. van der Horst GT, Muijtjens M, Kobayashi K et al (1999) Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398(6728):627–630. https://doi.org/10.1038/19323

    Article  PubMed  Google Scholar 

  22. Takahashi JS (2015) Molecular components of the circadian clock in mammals. Diabetes Obes Metab 17:6–11. https://doi.org/10.1111/dom.12514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Preitner N, Damiola F, Lopez-Molina L et al (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251–260. https://doi.org/10.1016/s0092-8674(02)00825-5

    Article  CAS  PubMed  Google Scholar 

  24. Chen ST, Choo KB, Hou MF et al (2005) Deregulated expression of the PER1, PER2 and PER3 genes in breast cancers. Carcinogenesis 26(7):1241–1246. https://doi.org/10.1093/carcin/bgi075

    Article  CAS  PubMed  Google Scholar 

  25. Albrecht U, Bordon A, Schmutz I et al (2007) The multiple facets of Per2. Cold Spring Harb Symp Quant Biol 72:95–104. https://doi.org/10.1101/sqb.2007.72.001

    Article  CAS  PubMed  Google Scholar 

  26. Miki T, Matsumoto T, Zhao Z et al (2013) p53 regulates Period2 expression and the circadian clock. Nat Commun. https://doi.org/10.1038/ncomms3444

    Article  PubMed  Google Scholar 

  27. Chen J (2016) The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med 6(3):a026104. https://doi.org/10.1101/cshperspect.a026104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gotoh T, Vila-Caballer M, Santos CS et al (2014) The circadian factor Period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol Biol Cell 25(19):3081–3093. https://doi.org/10.1091/mbc.E14-05-0993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berns K, Hijmans EM, Mullenders J et al (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428(6981):431–437. https://doi.org/10.1038/nature02371

    Article  CAS  PubMed  Google Scholar 

  30. Lee CC (2006) Tumor suppression by the mammalian Period genes. Cancer Causes Control 17(4):525–530. https://doi.org/10.1007/s10552-005-9003-8

    Article  PubMed  Google Scholar 

  31. Fu L, Pelicano H, Liu J et al (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111(1):41–50. https://doi.org/10.1016/s0092-8674(02)00961-3

    Article  CAS  PubMed  Google Scholar 

  32. Shaashua L, Mayer S, Lior C et al (2020) Stromal expression of the core clock gene period 2 is essential for tumor initiation and metastatic colonization. Front Cell Dev Biol 8:587697. https://doi.org/10.3389/fcell.2020.587697

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhang J, Lv H, Ji M et al (2020) Low circadian clock genes expression in cancers: A meta-analysis of its association with clinicopathological features and prognosis. PLoS One 15(5):e0233508. https://doi.org/10.1371/journal.pone.0233508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Papp SJ, Huber AL, Jordan SD et al (2015) DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. Elife. https://doi.org/10.7554/eLife.04883

    Article  PubMed  PubMed Central  Google Scholar 

  35. Peek CB, Levine DC, Cedernaes J et al (2017) Circadian Clock Interaction with HIF1α Mediates Oxygenic Metabolism and Anaerobic Glycolysis in Skeletal Muscle. Cell Metabol 25(1):86–92. https://doi.org/10.1016/j.cmet.2016.09.010

    Article  CAS  Google Scholar 

  36. Wallach T, Schellenberg K, Maier B et al (2013) Dynamic circadian protein-protein interaction networks predict temporal organization of cellular functions. PLoS Genet 9(3):e1003398. https://doi.org/10.1371/journal.pgen.1003398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bode B, Taneja R, Rossner MJ et al (2011) Advanced light-entrained activity onsets and restored free-running suprachiasmatic nucleus circadian rhythms in per2/dec mutant mice. Chronobiol Int 28(9):737–750. https://doi.org/10.3109/07420528.2011.607374

    Article  CAS  PubMed  Google Scholar 

  38. Kawamoto T, Noshiro M, Sato F et al (2004) A novel autofeedback loop of Dec1 transcription involved in circadian rhythm regulation. Biochem Biophys Res Commun 313(1):117–124

    Article  CAS  Google Scholar 

  39. Griffin EA Jr, Staknis D, Weitz CJ (1999) Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science 286(5440):768–771. https://doi.org/10.1126/science.286.5440.768

    Article  CAS  PubMed  Google Scholar 

  40. Masuda S, Narasimamurthy R, Yoshitane H et al (2020) Mutation of a PER2 phosphodegron perturbs the circadian phosphoswitch. Proc Natl Acad Sci USA 117(20):10888–10896. https://doi.org/10.1073/pnas.2000266117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knippschild U, Milne DM, Campbell LE et al (1997) p53 is phosphorylated in vitro and in vivo by the delta and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1 delta in response to topoisomerase-directed drugs. Oncogene 15(14):1727–1736. https://doi.org/10.1038/sj.onc.1201541

    Article  CAS  PubMed  Google Scholar 

  42. Yang WS, Stockwell BR (2008) Inhibition of casein kinase 1-epsilon induces cancer-cell-selective, PERIOD2-dependent growth arrest. Genome Biol 9(6):R92. https://doi.org/10.1186/gb-2008-9-6-r92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huttlin EL, Bruckner RJ, Paulo JA et al (2017) Architecture of the human interactome defines protein communities and disease networks. Nature 545(7655):505–509. https://doi.org/10.1038/nature22366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Eng GWL, Virshup DM (2017) Site-specific phosphorylation of casein kinase 1 δ (CK1δ) regulates its activity towards the circadian regulator PER2. PloS One 12(5):e0177834. https://doi.org/10.1371/journal.pone.0177834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kamagata M, Ikeda Y, Sasaki H et al (2017) Potent synchronization of peripheral circadian clocks by glucocorticoid injections in PER2::LUC-Clock/Clock mice. Chronobiol Int 34(8):1067–1082. https://doi.org/10.1080/07420528.2017.1338716

    Article  PubMed  Google Scholar 

  46. Vielhaber E, Eide E, Rivers A et al (2000) Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I epsilon. Mol Cell Biol 20(13):4888–4899. https://doi.org/10.1128/mcb.20.13.4888-4899.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tamiya H, Ogawa S, Ouchi Y et al (2016) Rigid cooperation of Per1 and Per2 proteins. Sci Rep 6:32769. https://doi.org/10.1038/srep32769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Asher G, Reinke H, Altmeyer M et al (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142(6):943–953. https://doi.org/10.1016/j.cell.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  49. Fustin J-M, Doi M, Yamaguchi Y et al (2013) RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell 155(4):793–806. https://doi.org/10.1016/j.cell.2013.10.026

    Article  CAS  PubMed  Google Scholar 

  50. Levine DC, Hong H, Weidemann BJ et al (2020) NAD controls circadian reprogramming through PER2 nuclear translocation to counter aging. Mol Cell. https://doi.org/10.1016/j.molcel.2020.04.010

    Article  PubMed  PubMed Central  Google Scholar 

  51. Dierickx P, Van Laake LW, Geijsen N (2018) Circadian clocks: from stem cells to tissue homeostasis and regeneration. EMBO Rep 19(1):18–28. https://doi.org/10.15252/embr.201745130

    Article  CAS  PubMed  Google Scholar 

  52. Romerowicz-Misielak M, Kozioł K, Nowak S et al (2020) Altered dynamics in the circadian oscillation of clock genes in serum-shocked NIH-3T3 cells by the treatment of GYY4137 or AOAA. Arch Biochem Biophys 680:108237. https://doi.org/10.1016/j.abb.2019.108237

    Article  CAS  PubMed  Google Scholar 

  53. Sasaki H, Hokugo A, Wang L et al (2020) Neuronal PAS domain 2 (Npas2)-deficient fibroblasts accelerate skin wound healing and dermal collagen reconstruction. Anat Rec (Hoboken, NJ : 2007) 303(6):1630–1641. https://doi.org/10.1002/ar.24109

    Article  CAS  Google Scholar 

  54. Lo Iacono M, Signorino E, Petiti J et al (2021) Genetic screening for potential new targets in chronic myeloid leukemia based on drosophila transgenic for human BCR-ABL1. Cancers (Basel). https://doi.org/10.3390/cancers13020293

    Article  Google Scholar 

  55. Yang M-Y, Yang W-C, Lin P-M et al (2011) Altered expression of circadian clock genes in human chronic myeloid leukemia. J Biol Rhythms 26(2):136–148. https://doi.org/10.1177/0748730410395527

    Article  PubMed  Google Scholar 

  56. Yang MY, Chang JG, Lin PM et al (2006) Downregulation of circadian clock genes in chronic myeloid leukemia: alternative methylation pattern of hPER3. Cancer Sci 97(12):1298–1307. https://doi.org/10.1111/j.1349-7006.2006.00331.x

    Article  CAS  PubMed  Google Scholar 

  57. Gery S, Komatsu N, Kawamata N et al (2007) Epigenetic silencing of the candidate tumor suppressor gene Per1 in non-small cell lung cancer. Clin Cancer Res 13(5):1399–1404. https://doi.org/10.1158/1078-0432.Ccr-06-1730

    Article  CAS  PubMed  Google Scholar 

  58. Koch A, Joosten SC, Feng Z et al (2018) Analysis of DNA methylation in cancer: location revisited. Nat Rev Clin Oncol 15(7):459–466. https://doi.org/10.1038/s41571-018-0004-4

    Article  CAS  PubMed  Google Scholar 

  59. Hoffman AE, Yi CH, Zheng T et al (2010) CLOCK in breast tumorigenesis: genetic, epigenetic, and transcriptional profiling analyses. Cancer Res 70(4):1459–1468. https://doi.org/10.1158/0008-5472.Can-09-3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang Z, Wang H, Guo H et al (2020) The circadian rhythm and core gene Period2 regulate the chemotherapy effect and multidrug resistance of ovarian cancer through the PI3K signaling pathway. Biosci Rep. https://doi.org/10.1042/bsr20202683

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sun CM, Huang SF, Zeng JM et al (2010) Per2 inhibits k562 leukemia cell growth in vitro and in vivo through cell cycle arrest and apoptosis induction. Pathol Oncol Res 16(3):403–411. https://doi.org/10.1007/s12253-009-9227-0

    Article  CAS  PubMed  Google Scholar 

  62. Wang N, Mi M, Wei X et al (2020) Circadian clock gene Period2 suppresses human chronic myeloid leukemia cell proliferation. Exp Ther Med. https://doi.org/10.3892/etm.2020.9276

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu J, Zhang Y, Huang H et al (2021) Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation. Chemical Biol Drug Des 97(3):649–664. https://doi.org/10.1111/cbdd.13801

    Article  CAS  Google Scholar 

  64. Li J, Yang F, Feng JK et al (2015) Expression of per2 gene in CML and its relationship with bcr/abl. Chin J Lab Diagn 19(9):1481–1483

    Google Scholar 

  65. Li Z, Philip M, Ferrell PB (2020) Alterations of T-cell-mediated immunity in acute myeloid leukemia. Oncogene 39(18):3611–3619. https://doi.org/10.1038/s41388-020-1239-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gery S, Gombart AF, Yi WS et al (2005) Transcription profiling of C/EBP targets identifies Per2 as a gene implicated in myeloid leukemia. Blood 106(8):2827–2836. https://doi.org/10.1182/blood-2005-01-0358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Scott LM, Civin CI, Rorth P et al (1992) A novel temporal expression pattern of three C/EBP family members in differentiating myelomonocytic cells. Blood 80(7):1725–1735

    Article  CAS  Google Scholar 

  68. Radomska HS, Huettner CS, Zhang P et al (1998) CCAAT/enhancer binding protein alpha is a regulatory switch sufficient for induction of granulocytic development from bipotential myeloid progenitors. Mol Cell Biol 18(7):4301–4314. https://doi.org/10.1128/mcb.18.7.4301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gery S, Koeffler HP (2009) Per2 Is a C/EBP target gene implicated in myeloid leukemia. Integr Cancer Ther 8(4):317–320. https://doi.org/10.1177/1534735409352084

    Article  CAS  PubMed  Google Scholar 

  70. Albanesi J, Noguera NI, Banella C et al (2020) Transcriptional and metabolic dissection of ATRA-induced granulocytic differentiation in nb4 acute promyelocytic leukemia cells. Cells. https://doi.org/10.3390/cells9112423

    Article  PubMed  PubMed Central  Google Scholar 

  71. Thomas X, Heiblig M (2020) Acute promyelocytic leukemia. Cancers (Basel). https://doi.org/10.3390/cancers12123718

    Article  PubMed Central  Google Scholar 

  72. Hoischen C, Monajembashi S, Weisshart K et al (2018) Multimodal light microscopy approaches to reveal structural and functional properties of promyelocytic leukemia nuclear bodies. Front Oncol 8:125. https://doi.org/10.3389/fonc.2018.00125

    Article  PubMed  PubMed Central  Google Scholar 

  73. Miki T, Xu Z, Chen-Goodspeed M et al (2012) PML regulates PER2 nuclear localization and circadian function. EMBO J 31(6):1427–1439. https://doi.org/10.1038/emboj.2012.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Miki T, Chen-Goodspeed M, Zhao Z et al (2013) Circadian behavior of mice deficient in PER1/PML or PER2/PML. J Circadian Rhythms 11(1):9. https://doi.org/10.1186/1740-3391-11-9

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhu Y, Leaderer D, Guss C et al (2007) Ala394Thr polymorphism in the clock gene NPAS2: a circadian modifier for the risk of non-Hodgkin’s lymphoma. Int J Cancer 120(2):432–435. https://doi.org/10.1002/ijc.22321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lahti TA, Partonen T, Kyyrönen P et al (2008) Night-time work predisposes to non-Hodgkin lymphoma. Int J Cancer 123(9):2148–2151. https://doi.org/10.1002/ijc.23566

    Article  CAS  PubMed  Google Scholar 

  77. Liu Y, Barta SK (2019) Diffuse large B-cell lymphoma: 2019 update on diagnosis, risk stratification, and treatment. Am J Hematol 94(5):604–616. https://doi.org/10.1002/ajh.25460

    Article  CAS  PubMed  Google Scholar 

  78. Thoennissen NH, Thoennissen GB, Abbassi S et al (2012) Transcription factor CCAAT/enhancer-binding protein alpha and critical circadian clock downstream target gene PER2 are highly deregulated in diffuse large B-cell lymphoma. Leukemia Lymphoma 53(8):1577–1585. https://doi.org/10.3109/10428194.2012.658792

    Article  CAS  PubMed  Google Scholar 

  79. Lee HM, Chen R, Kim H et al (2011) The period of the circadian oscillator is primarily determined by the balance between casein kinase 1 and protein phosphatase 1. Proc Natl Acad Sci USA 108(39):16451–16456. https://doi.org/10.1073/pnas.1107178108

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chun SK, Jang J, Chung S et al (2014) Identification and validation of cryptochrome inhibitors that modulate the molecular circadian clock. ACS Chem Biol 9(3):703–710. https://doi.org/10.1021/cb400752k

    Article  CAS  PubMed  Google Scholar 

  81. Rossi DJ, Bryder D, Seita J et al (2007) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447(7145):725–729. https://doi.org/10.1038/nature05862

    Article  CAS  PubMed  Google Scholar 

  82. Rübe CE, Fricke A, Widmann TA et al (2011) Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One 6(3):e17487. https://doi.org/10.1371/journal.pone.0017487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang J, Morita Y, Han B et al (2016) Per2 induction limits lymphoid-biased haematopoietic stem cells and lymphopoiesis in the context of DNA damage and ageing. Nat Cell Biol 18(5):480–490. https://doi.org/10.1038/ncb3342

    Article  CAS  PubMed  Google Scholar 

  84. Wang J, Morita Y, Han B et al (2019) Author Correction: Per2 induction limits lymphoid-biased haematopoietic stem cells and lymphopoiesis in the context of DNA damage and ageing. Nat Cell Biol 21(6):791–792. https://doi.org/10.1038/s41556-019-0279-4

    Article  CAS  PubMed  Google Scholar 

  85. Tomita T, Kurita R, Onishi Y (2017) Epigenetic regulation of the circadian clock: role of 5-aza-2′-deoxycytidine. Biosci Rep. https://doi.org/10.1042/bsr20170053

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wolowiec D, Ciszak L, Kosmaczewska A et al (2001) Cell cycle regulatory proteins and apoptosis in B-cell chronic lymphocytic leukemia. Haematologica 86(12):1296–1304

    CAS  PubMed  Google Scholar 

  87. Taniguchi H, Fernández AF, Setién F et al (2009) Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res 69(21):8447–8454. https://doi.org/10.1158/0008-5472.Can-09-0551

    Article  CAS  PubMed  Google Scholar 

  88. Rana S, Munawar M, Shahid A et al (2013) Deregulated expression of circadian clock and clock-controlled cell cycle genes in chronic lymphocytic leukemia. Mol Biol Rep 41(1):95–103. https://doi.org/10.1007/s11033-013-2841-7

    Article  CAS  PubMed  Google Scholar 

  89. D’Arena G, De Feo V, Pietrantuono G et al (2020) CD200 and Chronic Lymphocytic Leukemia: Biological and Clinical Relevance. Front Oncol 10:584427. https://doi.org/10.3389/fonc.2020.584427

    Article  PubMed  PubMed Central  Google Scholar 

  90. Eisele L, Prinz R, Klein-Hitpass L et al (2009) Combined PER2 and CRY1 expression predicts outcome in chronic lymphocytic leukemia. Eur J Haematol 83(4):320–327. https://doi.org/10.1111/j.1600-0609.2009.01287.x

    Article  CAS  PubMed  Google Scholar 

  91. Dan H, Zhang S, Zhou Y et al (2019) DNA Methyltransferase Inhibitors: Catalysts For Antitumour Immune Responses. Onco Targets Ther 12:10903–10916. https://doi.org/10.2147/ott.S217767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Major scientific and technological innovation projects of Shandong Province of China (Grant No. 2019JZZY011018), Yantai Science and Technology Plan Project of China (Grant No. 2019MSGY133) and Yantai Science and Technology Plan Project of China (Grant No. 2019YD004).

Author information

Authors and Affiliations

Authors

Contributions

HJ and XY had the idea for the review and wrote the first draft of the manuscript. MM, XW performed the literature search. HW and YX collected data. CS critically revised the work. All authors have read and approved the manuscript, and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Chengming Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent for participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Yang, X., Mi, M. et al. PER2: a potential molecular marker for hematological malignancies. Mol Biol Rep 48, 7587–7595 (2021). https://doi.org/10.1007/s11033-021-06751-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06751-w

Keywords