Skip to main content
Log in

The effects of plant growth substances on the oil content and fatty acid composition of Ricinus communis L.: an in vitro study

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Ricinus communis L. (castor bean) is valued for its oil and the performance of oil is closely related to its fatty acid composition. Thus, producing oil in vitro with favored fatty acid profiles is a promising research area and may also offer industrial opportunities.

Material and Method

In line with this, the total amount of oil and the fatty acid composition of the samples, which were endosperm and calli obtained by treatment of various doses of plant growth regulators were determined.

Results

Results showed that the type and amount of the plant growth regulator used in the media affect the fatty acid composition. In detail, the biggest change was shown by Indole-3-Acetic Acid (IAA), in general, using the plant growth regulators at 5 mg L−1, instead of 20 mg L−1, was found to have induced larger differentiations. The effect of a natural plant growth regulator (IAA) on fatty acid profiles was bigger than the synthetic ones (NAA, 1-Naphthaleneacetic acid, and 2,4 D, 2,4-Dichlorophenoxyacetic acid). The media containing 5 mg L−1 of NAA, 20 mg L−1 of NAA, 20 mg L−1 of 2,4 D, or 5 mg L−1 of 2,4 D gave similar results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Dharajiya DT, Shah A, Galvadiya BP, Patel MP, Srivastava R, Pagi NK, Solanki SD, Parida SK, Tiwari KK (2020) Genome-wide microsatellite markers in castor (Ricinus communis L.): identification, development, characterization, and transferability in Euphorbiaceae. Ind Crops Prod 151:112461

    CAS  Google Scholar 

  2. Sousa NL, Cabral GB, Vieira PM, Baldoni AB, Aragao FJ (2017) Bio-detoxification of ricin in castor bean (Ricinus communis L.) seeds. Sci Rep 7(1):1–9

    Google Scholar 

  3. Kim H, Lei P, Wang A, Liu S, Zhao Y, Huang F, Yu Z, Zhu G, He Z, Tan D, Wang H (2021) Genetic diversity of castor bean (Ricinus communis L.) revealed by ISSR and RAPD markers. Agronomy 11(3):457

    CAS  Google Scholar 

  4. Wang C, Li GR, Zhang ZY, Peng M, Shang YS, Luo R, Chen YS (2013) Genetic diversity of castor bean (Ricinus communis L.) in Northeast China revealed by ISSR markers. Biochem Syst Ecol 51:301–307

    CAS  Google Scholar 

  5. Yusuf AK, Mamza PAP, Ahmed AS, Agunwa U (2015) Extraction and characterization of castor seed oil from wild Ricinus communis Linn. Int J Sci Environ 4(5):1392–1404

    Google Scholar 

  6. Fadhil AB, Al-Tikrity ETB, Albadree MA (2017) Biodiesel production from mixed non-edible oils, castor seed oil and waste fish oil. Fuel 210:721–728

    CAS  Google Scholar 

  7. Scarpa A, Guerci A (1982) Various uses of the castor oil plant (Ricinus communis L.) a review. J Ethnopharmacol 5(2):117–137

    CAS  PubMed  Google Scholar 

  8. Akande TO, Odunsi AA, Akinfala EO (2016) A review of nutritional and toxicological implications of castor bean (Ricinus communis L.) meal in animal feeding systems. J Anim Physiol Anim Nutr 1:201–210

    Google Scholar 

  9. Arunkumar M, Kannan M, Murali G (2019) Experimental studies on engine performance and emission characteristics using castor biodiesel as fuel in CI engine. Renew Energy 131:737–744

    CAS  Google Scholar 

  10. Zuleta EC, Rios LA, Benjumea PN (2012) Oxidative stability and cold flow behavior of Palm, Sacha-inchi, Jatropha and Castor oil biodiesel blends. Fuel Process Technol 102:96–101

    CAS  Google Scholar 

  11. Islam MS, Ahmed AS, Islam A, Abdul Aziz S, Xian LC, Mridha M (2014) Study on emission and performance of diesel engine using castor biodiesel. J Chem. https://doi.org/10.1155/2014/451526

    Article  Google Scholar 

  12. Bueno AV, Pereira MPB, de Oliveira Pontes JV, de Luna FMT, Cavalcante CL (2017) Performance and emissions characteristics of castor oil biodiesel fuel blends. Appl Therm Eng 125:559–566

    CAS  Google Scholar 

  13. Jeong GT, Park DH (2009) Optimization of biodiesel production from castor oil using response surface methodology. Appl Biochem Biotechnol 156:1–11

    PubMed  Google Scholar 

  14. Nicory IM, de Carvalho GG, Ribeiro OL, Silva RR, Tosto MS, Costa-Lopes LS, Souza FN, de Oliveira Nascimento C (2015) Ingestive behavior of lambs fed diets containing castor seed meal. Trop Anim Health Prod 47(5):939–944

    PubMed  Google Scholar 

  15. Foster JT, Allan GJ, Chan AP, Rabinowicz PD, Ravel J, Jackson PJ, Keim P (2010) Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol 10(1):13

    PubMed  PubMed Central  Google Scholar 

  16. Yousaf MM, Hussain M, Shah MJ, Ahmed B, Zeshan M, Raza MM, Ali K (2018) Yield response of castor (Ricinus communis L.) to NPK fertilizers under arid climatic conditions. Pak J Agric Res 31(2):180–185

    Google Scholar 

  17. Arif M, Khurshid H, Siddiqui SU, Jatoi SA, Jan SA, Ilyas M, Khan SA, Khan A, Ibrahim MI, Saleem N, Ghafoor A (2015) Estimating spatial population structure through quantification of oil content and phenotypic diversity in Pakistani castor bean (Ricinus communis L.) germplasm. Sci Technol Dev 34(3):147–154

    Google Scholar 

  18. Olivares AR, Carrillo-González R, González-Chávez MD, Hernández RM (2013) Potential of Castor bean (Ricinus communis l.) for phytoremediation of mine tailings and oil production. J Environ Manage 114:316–323

    Google Scholar 

  19. Román-Figueroa C, Cea M, Paneque M, González ME (2020) Oil content and fatty acid composition in Castor bean naturalized accessions under Mediterranean conditions in Chile. Agronomy 10(8):1145

    Google Scholar 

  20. Abolfazl A, Nasrin F, Habib S, Saeid H (2011) The effect of climatic factors on the production and quality of castor oil. Nat Sci 9(4):15–19

    Google Scholar 

  21. Muraguri S, Xu W, Chapman M, Muchugi A, Oluwaniyi A, Oyebanji O, Liu A (2020) Intraspecific variation within Castor bean (Ricinus communis l.) based on chloroplast genomes. Ind Crops Prod 155:112779

    CAS  Google Scholar 

  22. Koutroubas SD, Papakosta DK, Doitsinis A (1999) Adaptation and yielding ability of Castor plant (Ricinus communis l.) genotypes in a Mediterranean climate. Eur J Agron 11(3–4):227–237

    Google Scholar 

  23. FAOSTAT. Food and Agriculture Organization of the United Nations (2020). http://www.fao.org/faostat/en/#data/QC. Accessed 31 Apr 2021

  24. Sreenivasan B, Kamath NR, Kane JG (1956) Studies on Castor oil I. Fatty acid composition of Castor oil. J Am Oil Chem Soc 33(2):61–66

    CAS  Google Scholar 

  25. Binder RG, Applewhite TH, Kohler GO, Goldblatt LA (1962) Chromatographie analysis of seed oils. fatty acid composition of Castor oil. J Am Oil Chem Soc 39(12):513–517

    CAS  Google Scholar 

  26. Rodríguez-Leyes EA, Canavaciolo VLG, Delange DM, Enríquez ARS, Fajardo YA (2007) Fatty acid composition and oil yield in fruits of five Arecaceae species grown in Cuba. J Am Oil Chem Soc 84(8):765–767

    Google Scholar 

  27. Ercisli S, Orhan E (2008) Fatty acid composition of seeds of yellow, red, and black colored Prunus mahaleb fruits in Turkey. Chem Nat Compd 44(1):87–89

    CAS  Google Scholar 

  28. Canoira L, García Galeán J, Alcántara R, Lapuerta M, García-Contreras R (2010) Fatty acid methyl esters (FAMEs) from Castor oil: production process assessment and synergistic effects in its properties. Renew Energy 35(1):208–217

    CAS  Google Scholar 

  29. Salimon J, Mohd Noor DA, Nazrizawati AT, Mohd Firdaus MY, Noraishah A (2010) Fatty acid composition and physicochemical properties of Malaysian Castor bean Ricinus communis L. seed oil. Sains Malays 39(5):761–764

    CAS  Google Scholar 

  30. Serce S, Ercisli S, Sengul M, Gunduz K, Orhan E (2010) Antioxidant activities and fatty acid composition of wild grown Myrtle (Myrtus communis L.) fruits. Pharmacogn Mag  6(21):9–12

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Beyhan O, Ozcan A, Ozcan H, Kafkas E, Kafkas S, Sutyemez M, Ercisli S (2017) Fat, fatty acids and tocopherol content of several walnut genotypes. Not Bot Horti Agrobot Cluj-Napoca  45(2):437–441

    CAS  Google Scholar 

  32. Senkal BC, Uskutoglu T, Cesur C, Ozavci V, Dogan H (2019) Determination of essential oil components, mineral matter, and heavy metal content of Salvia virgata Jacq. grown in culture conditions. Turk J Agric For 43(4):395–404

    CAS  Google Scholar 

  33. Cetin N, Yaman M, Karaman K, Demir B (2020) Determination of some physicomechanical and biochemical parameters of hazelnut (Corylus avellana L.) cultivars. Turk J Agric For 44(5):439–450

    CAS  Google Scholar 

  34. Ergun Z, Bozkurt T (2020) Determination of fatty acid composition and antioxidant activity of fig seed oil. Int J Agric Nat Sci  13(2):101–107

    Google Scholar 

  35. Popova V, Petkova Z, Ivanova T, Stoyanova M, Panayotov N, Mazova N, Stoyanova A (2020) Determination of the chemical composition of seeds, peels, and seedcakes from two genotypes of Cape gooseberry (Physalis peruviana L.). Turk J Agric For 44(6):642–650

    CAS  Google Scholar 

  36. Subasi I (2020) Seed fatty acid compositions and chemotaxonomy of wild Crambe (Brassicaceae) taxa in Turkey. Turk J Agric For 44(6):662–670

    CAS  Google Scholar 

  37. Ergün Z (2021) Determination of fatty acid composition of seed and tuber oils of Eminium rauwolffii (Blume) Schott var. rauwolffii. Karaelmas Sci Eng J 11(1):28–32

    Google Scholar 

  38. Ilhan G, Gundogdu M, Karlović K, Židovec V, Vokurka A, Ercisli S (2021) Main agro-morphological and biochemical berry characteristics of wild-grown sea buckthorn (Hippophae rhamnoides L. ssp. caucasica Rousi) genotypes in Turkey. Sustainability 13(3):1198

    CAS  Google Scholar 

  39. Zarifikhosroshahi M, Ergun Z (2021) The effect of storage temperature on the composition of fatty acids in crimson sweet (Citrullus lanatus var. lanatus) watermelon cultivar seeds. J Inst Sci Technol 11(2):839–845

    Google Scholar 

  40. Stearns EM, Morton WT (1975) Biosynthesis of fatty acids from acetate in soybean suspension cultures. Lipids 10(10):597–601

    CAS  PubMed  Google Scholar 

  41. Stearns EM, Morton WT (1975) Effects of growth regulators on fatty acids of soybean suspension cultures. Phytochemistry 14(3):619–622

    CAS  Google Scholar 

  42. Hafez RM, Mohammed AAY, El-Naby AERMA, Tolba AEA, Khalifa EYM, Hamed HM, Abdullah MMK, Ahmed MMF, Hekal MS, Ali DHA (2019) Changes in the profiling of fatty acids of Glycine max L. (Soybean) callus after mutagen treatments. Egypt J Bot 59(3):679–694

    Google Scholar 

  43. Koufan M, Belkoura I, Mazri MA, Amarraque A, Essatte A, Elhorri H, Zaddoug F, Alaoui T (2020) Determination of antioxidant activity, total phenolics and fatty acids in essential oils and other extracts from callus culture, seeds and leaves of Argania spinosa (L.) skeels. Plant Cell Tissue Organ Cult 141(1):217–227

    CAS  Google Scholar 

  44. Hernandez LR, Mendiola MAR, Castro CA, Gutiérrez-Miceli FA (2015) Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture. J Oleo Sci 64(3):325–330

    CAS  PubMed  Google Scholar 

  45. Aly MAM, Amer EA, Al-Zayadneh WA, Eldin AEN (2008) Growth regulators influence the fatty acid profiles of in vitro induced Jojoba somatic embryos. Plant Cell Tissue Organ Cult 93(1):107–114

    CAS  Google Scholar 

  46. Murashige T, Skoog FA (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    CAS  Google Scholar 

  47. Perdomo FA, Acosta-Osorio AA, Herrera G, Vasco-Leal JF, Mosquera-Artamonov JD, Millan-Malo B, Rodriguez-Garcia ME (2013) Physicochemical characterization of seven Mexican Ricinus communis L. seeds & oil contents. Biomass Bioenergy 48:17–24

    CAS  Google Scholar 

  48. Demirtas I, Pelvan E, Ozdemir IS, Alasalvar C, Ertas E (2013) Lipid characteristics and phenolics of native grape seed oils grown in Turkey. Eur J Lipid Sci Technol 115(6):641–647

    CAS  Google Scholar 

  49. Kohler U, Luniak M (2005) Data inspection using biplots. Stata J 5(2):208–223

    Google Scholar 

  50. Dabuwar Benjamin E, Adamu Ishaku G, Andrew Peingurta F, Samuel Afolabi A (2019) Callus culture for the production of therapeutic compounds. Am J Plant Biol 4(4):76–84

    Google Scholar 

  51. Aftab F, Akram S, Iqbal J (2008) Estimation of fixed oils from various explants and in vitro callus cultures of Jojoba (Simmondsia chinensis). Pak J Bot 40(4):1467–1471

    CAS  Google Scholar 

  52. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 16:1–16

    Google Scholar 

  53. Dörnenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb Technol 1:674–684

    Google Scholar 

  54. da Luz Costa J, da Silva AL, Bier MC, Brondani GE, Gollo AL, Letti LA, Erasmo EA, Soccol CR (2015) Callus growth kinetics of physic nut (Jatropha curcas l.) and content of fatty acids from crude oil obtained in vitro. Appl Biochem Biotechnol 176(3):892–902

    PubMed  Google Scholar 

  55. Liu JY, Qiu W, Song YM (2016) Stimulatory effect of auxins on the growth and lipid productivity of Clorella pyrenoidosa and Scenedesmus quadricauda. Algal Res 18:273–280

    Google Scholar 

  56. Park HY, Saini RK, Gopal J, Keum Y-S, Kim DH, Lee O, Sivanesan I (2017) Micropropagation and subsequent enrichment of carotenoids, fatty acids, and tocopherol contents in Sedum dasyphyllum L. Front Chem 5:77

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is thankful to the academic and administrative staff of Çukurova University Ali Nihat Gökyiğit Botanical Garden for the materials used in this study.

Funding

No external funding obtained for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeynep Ergun.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human and/or animal participants

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ergun, Z. The effects of plant growth substances on the oil content and fatty acid composition of Ricinus communis L.: an in vitro study. Mol Biol Rep 49, 5241–5249 (2022). https://doi.org/10.1007/s11033-021-06686-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06686-2

Keywords

Navigation