Skip to main content

Advertisement

Log in

Transitional cell carcinoma matrix stiffness regulates the osteopontin and YAP expression in recurrent patients

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Cells translate the mechanosensing of extracellular matrix component dysregulation and stiffness into the signal transduction including Osteopontin (OPN) through the Hippo pathway. But how extracellular matrix (ECM) component dysregulation and stiffness are ultimately linked to transitional cell carcinoma (TCC) development remains poorly understood. This study was aimed to evaluate the possible links between ECM component alteration after cancer surgery and OPN and Yes-associated protein (YAP) expression in TCC and adjacent tissues. In this study, we used 50 TCC (25 newly diagnosed and 25 recurrent) and 50 adjacent tissues to determine the tissue stiffness using atomic force microscopy. The mRNA expression of SPP1, Indian hedgehog (IHH), and YAP was also determined using qRT-PCR. Western blotting and ELISA were performed to assess the tissue and serum levels of OPN, respectively. To assess the glycoproteins and elastic fibers content, Periodic Acid Schiff, and Verhoeff-Van Gieson Staining were performed, respectively. Matrix stiffness was markedly higher in TCCs than adjacent tissues (p < 0.05). Gene expression analysis showed that YAP, SPP1, and IHH genes were upregulated in TCC tissues (p < 0.05). Additionally, the OPN protein overexpression was observed in the tissue and the serum of TCC patients (p < 0.05). We also found that glycoproteins, elastic fibers content of recurrent TCC tissues was remarkably higher as compared to adjacent tissues (p < 0.05). Our results suggest that glycoproteins and elastic fibers content modulation and ECM stiffness may upregulates the expression of YAP, SPP1 and IHH genes, and possibly contribute to the TCC development and relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu X, Cui J, Gong L, Tian F, Shen Y, Chen L et al (2020) The CUL4B-miR-372/373-PIK3CA-AKT axis regulates metastasis in bladder cancer. Oncogene 39(17):3588–3603

    CAS  PubMed  Google Scholar 

  2. Ghasemi H, Amini MA, Pegah A, Azizi E, Tayebinia H, Khanverdilou S et al (2020) Overexpression of reactive oxygen species modulator 1 is associated with advanced grades of bladder cancer. Mol Biol Rep 47(9):6497–6505

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Montironi R, Lopez-Beltran A (2005) The 2004 WHO classification of bladder tumors: a summary and commentary. Int J Surg Pathol 13(2):143–153

    PubMed  Google Scholar 

  4. Huaqi Y, Caipeng Q, Qiang W, Yiqing D, Tao X (2019) The role of SOX18 in bladder cancer and its underlying mechanism in mediating cellular functions. Life Sci 232:116614

    PubMed  Google Scholar 

  5. Alfano M, Canducci F, Nebuloni M, Clementi M, Montorsi F, Salonia A (2016) The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat Rev Urol 13(2):77–90

    CAS  PubMed  Google Scholar 

  6. Najafi M, Mortezaee K, Majidpoor J (2019) Stromal reprogramming: a target for tumor therapy. Life Sci 239:117049

    CAS  PubMed  Google Scholar 

  7. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10(1):63–73

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dalirfardouei R, Karimi G, Jamialahmadi K (2016) Molecular mechanisms and biomedical applications of glucosamine as a potential multifunctional therapeutic agent. Life Sci 152:21–29

    CAS  PubMed  Google Scholar 

  10. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2016) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27

    CAS  PubMed  Google Scholar 

  11. Schedin P, Keely PJ (2011) Mammary gland ECM remodelling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harbor Perspect Biol 3(1):a003228

    Google Scholar 

  12. Chaudhuri O, Koshy ST, Branco da Cunha C, Shin JW, Verbeke CS, Allison KH et al (2014) Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat Mater 13(10):970–978

    CAS  PubMed  Google Scholar 

  13. Ghasemi H, Mousavibahar SH, Hashemnia M, Karimi J, Khodadadi I, Mirzaei F et al (2020) Tissue stiffness contributes to YAP activation in bladder cancer patients undergoing transurethral resection. Ann N Y Acad Sci 1473(1):48–61

    CAS  PubMed  Google Scholar 

  14. Oskarsson T (2013) Extracellular matrix components in breast cancer progression and metastasis. Breast 22(2):S66-72

    PubMed  Google Scholar 

  15. You Y, Zheng Q, Dong Y, Wang Y, Zhang L, Xue T et al (2015) Higher matrix stiffness upregulates osteopontin expression in hepatocellular carcinoma cells mediated by integrin β1/GSK3β/β-catenin signaling pathway. PloS One 10(8):e0134243

    PubMed  PubMed Central  Google Scholar 

  16. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI et al (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15(6):637–646

    CAS  PubMed  Google Scholar 

  17. Wang X, Zheng Z, Caviglia JM, Corey KE, Herfel TM, Cai B et al (2016) Hepatocyte TAZ/WWTR1 promotes inflammation and fibrosis in nonalcoholic steatohepatitis. Cell Metab 24(6):848–862

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Weber GF (2016) Time and circumstances: cancer cell metabolism at various stages of disease progression. Front Oncol 6:257

    PubMed  PubMed Central  Google Scholar 

  19. Pritchett J, Harvey E, Athwal V, Berry A, Rowe C, Oakley F et al (2012) Osteopontin is a novel downstream target of SOX9 with diagnostic implications for progression of liver fibrosis in humans. Hepatology 56(3):1108–1116

    CAS  PubMed  Google Scholar 

  20. Gill MK, Christova T, Zhang YY, Gregorieff A, Zhang L, Narimatsu M et al (2018) A feed forward loop enforces YAP/TAZ signaling during tumorigenesis. Nat Commun 9(1):3510

    PubMed  PubMed Central  Google Scholar 

  21. Lee YC, Kurtova AV, Xiao J, Nikolos F, Hayashi K, Tramel Z et al (2019) Collagen-rich airway smooth muscle cells are a metastatic niche for tumor colonization in the lung. Nat Commun 10(1):2131

    PubMed  PubMed Central  Google Scholar 

  22. Hao J, Zhang Y, Ye R, Zheng Y, Zhao Z, Li J (2013) Mechanotransduction in cancer stem cells. Cell Biol Int 37(9):888–891

    CAS  PubMed  Google Scholar 

  23. Liu X, Long X, Gao Y, Liu W, Hayashi T, Mizuno K et al (2020) Type I collagen inhibits adipogenic differentiation via YAP activation in vitro. J Cell Physiol 235(2):1821–1837

    CAS  PubMed  Google Scholar 

  24. Hicks-Berthet J, Varelas X (2017) Integrin-FAK-CDC42-PP1A signaling gnaws at YAP/TAZ activity to control incisor stem cells. BioEssays 39(10):1700116

    Google Scholar 

  25. Meng Z, Moroishi T, Guan KL (2016) Mechanisms of Hippo pathway regulation. Genes Dev 30(1):1–17

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang YP, Tang DX (2015) Expression of Yes-associated protein in liver cancer and its correlation with clinicopathological features and prognosis of liver cancer patients. Int J Clin Exp Med 8(1):1080–1086

    PubMed  PubMed Central  Google Scholar 

  27. Irby RB, McCarthy SM, Yeatman TJ (2004) Osteopontin regulates multiple functions contributing to human colon cancer development and progression. Clin Exp Metas 21(6):515–523

    CAS  Google Scholar 

  28. Gu T, Ohashi R, Cui R, Tajima K, Yoshioka M, Iwakami S et al (2009) Osteopontin is involved in the development of acquired chemo-resistance of cisplatin in small cell lung cancer. Lung Cancer 66(2):176–183

    PubMed  Google Scholar 

  29. Wu CY, Wu MS, Chiang EP, Wu CC, Chen YJ, Chen CJ et al (2007) Elevated plasma osteopontin associated with gastric cancer development, invasion and survival. Gut 56(6):782–789

    CAS  PubMed  Google Scholar 

  30. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M et al (2014) CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14(3):342–356

    CAS  PubMed  Google Scholar 

  31. Subraman V, Thiyagarajan M, Malathi N, Rajan ST (2015) OPN—revisited. JCDR. https://doi.org/10.7860/JCDR/2015/12872.6111

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mohamed AA, El-Toukhy N, Alkhalegy AA-H, Boraii S (2016) Osteopontin as a tumor marker for hepatocellular carcinoma. J Gastroenterol Hepatol Res 5(4):2140–2146

    CAS  Google Scholar 

  33. Barak V, Kaiserman I, Frenkel S, Hendler K, Kalickman I, Pe’er J (2011) The dynamics of serum tumor markers in predicting metastatic uveal melanoma (part 1). Anticancer Res 31(1):345–349

    CAS  PubMed  Google Scholar 

  34. Said HM, Katzer A, Flentje M, Vordermark D (2005) Response of the plasma hypoxia marker osteopontin to in vitro hypoxia in human tumor cells. Radiother Oncol 76(2):200–205

    CAS  PubMed  Google Scholar 

  35. Shimada Y, Watanabe G, Kawamura J, Soma T, Okabe M, Ito T et al (2005) Clinical significance of osteopontin in esophageal squamous cell carcinoma: comparison with common tumor markers. Oncology 68(2–3):285–292

    CAS  PubMed  Google Scholar 

  36. Honsawek S, Chayanupatkul M, Chongsrisawat V, Vejchapipat P, Poovorawan Y (2010) Increased osteopontin and liver stiffness measurement by transient elastography in biliary atresia. World J Gastroenterol 16(43):5467

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Syn W-K, Agboola KM, Swiderska M, Michelotti GA, Liaskou E, Pang H et al (2012) NKT-associated hedgehog and osteopontin drive fibrogenesis in non-alcoholic fatty liver disease. Gut 61(9):1323–1329

    CAS  PubMed  Google Scholar 

  38. Pratap J, Lian JB, Stein GS (2011) Metastatic bone disease: role of transcription factors and future targets. Bone 48(1):30–36

    CAS  PubMed  Google Scholar 

  39. Khajehahmadi Z, Mohagheghi S, Nikeghbalian S, Geramizadeh B, Khodadadi I, Karimi J et al (2020) Liver stiffness correlates with serum osteopontin and TAZ expression in human liver cirrhosis. Ann N Y Acad Sci 1465(1):117–131

    CAS  PubMed  Google Scholar 

  40. Sun S-S, Zhang L, Yang J, Zhou X (2015) Role of runt-related transcription factor 2 in signal network of tumors as an inter-mediator. Cancer Lett 361(1):1–7

    CAS  PubMed  Google Scholar 

  41. Liu F, Lagares D, Choi KM, Stopfer L, Marinković A, Vrbanac V et al (2015) Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. Am J Physiol Lung Cell Mol Physiol 308(4):L344–L357

    CAS  PubMed  Google Scholar 

  42. Piersma B, Bank RA, Boersema M (2015) Signaling in fibrosis: TGF-β, WNT, and YAP/TAZ converge. Front Med 2:59

    Google Scholar 

  43. Szeto SG, Narimatsu M, Lu M, He X, Sidiqi AM, Tolosa MF et al (2016) YAP/TAZ are mechanoregulators of TGF-β-Smad signaling and renal fibrogenesis. J Am Soc Nephrol 27(10):3117–3128

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fukaya M, Isohata N, Ohta H, Aoyagi K, Ochiya T, Saeki N et al (2006) Hedgehog signal activation in gastric pit cell and in diffuse-type gastric cancer. Gastroenterology 131(1):14–29

    CAS  PubMed  Google Scholar 

  45. Katoh Y, Katoh M (2005) Hedgehog signaling pathway and gastric cancer. Cancer Biol Ther 4(10):1050–1054

    CAS  PubMed  Google Scholar 

  46. Yauch RL, Gould SE, Scales SJ, Tang T, Tian H, Ahn CP et al (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455(7211):406–410

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research reported in this publication was supported by Elite Researcher Grant Committee under award number 971359 from the National Institutes for Medical Research Development (NIMAD), Tehran, Iran. We would like to appreciate all participants who made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidar Tavilani.

Ethics declarations

Conflict of interest

All the authors have declared that no conflict interest exists.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or National Research Committee of National Institute for Medical Research Development.

Informed consent

Informed consent was obtained from all participant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, H., Mousavibahar, S.H., Hashemnia, M. et al. Transitional cell carcinoma matrix stiffness regulates the osteopontin and YAP expression in recurrent patients. Mol Biol Rep 48, 4253–4262 (2021). https://doi.org/10.1007/s11033-021-06440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06440-8

Keywords

Navigation