Skip to main content
Log in

Update on genomic and molecular landscapes of well-differentiated liposarcoma and dedifferentiated liposarcoma

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Well-differentiated liposarcoma (WDLPS) is the most frequent subtype of liposarcoma and may transform into dedifferentiated liposarcoma (DDLPS) which is a more aggressive subtype. Retroperitoneal lesions of WDLPS/DDLPS tend to recur repeatedly due to incomplete resections, and adjuvant chemotherapy and radiotherapy have little effect on patient survival. Consequently, identifying therapeutic targets and developing targeted drugs is critical for improving the outcome of WDLPS/DDLPS patients. In this review, we summarised the mutational landscape of WDLPS/DDLPS from recent studies focusing on potential oncogenic drivers and the development of molecular targeted drugs for DDLPS. Due to the limited number of studies on the molecular networks driving WDLPS to DDLPS development, we looked at other dedifferentiation-related tumours to identify potential parallel mechanisms that could be involved in the dedifferentiation process generating DDLPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. World Health Organization classification of soft tissue and bone tumours (2020) 5th ed, vol. 3. Lyon: IARC Press

  2. Pedeutour F et al (1999) Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 24(1):30–41

    Article  CAS  PubMed  Google Scholar 

  3. Hoffman A et al (2011) New frontiers in the treatment of liposarcoma, a therapeutically resistant malignant cohort. Drug Resist Updat 14(1):52–66

    Article  PubMed  Google Scholar 

  4. Mandahl N et al (2017) Scattered genomic amplification in dedifferentiated liposarcoma. Mol Cytogenet 10:25

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mavrogenis AF, Papagelopoulos PJ (2013) Well-differentiated liposarcoma. Atlas Genet Cytogenet Oncol Haematol 8

  6. Matthews A, Tang M, Cooper K (2010) Cytogenetic aberrations in soft tissue tumors harvested from fresh tissue submitted for surgical pathology: a single institutional experience. Int J Surg Pathol 18(4):260–267

    Article  PubMed  Google Scholar 

  7. Momand J et al (1998) The MDM2 gene amplification database. Nucleic Acids Res 26(15):3453–3459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kanoe H et al (1998) Amplification of the CDK4 gene in sarcomas: tumor specificity and relationship with the RB gene mutation. Anticancer Res 18(4A):2317–2321

    CAS  PubMed  Google Scholar 

  9. Shimada S et al (2006) The value of MDM2 and CDK4 amplification levels using real-time polymerase chain reaction for the differential diagnosis of liposarcomas and their histologic mimickers. Hum Pathol 37(9):1123–1129

    Article  CAS  PubMed  Google Scholar 

  10. Aleixo PB et al (2009) Can MDM2 and CDK4 make the diagnosis of well differentiated/dedifferentiated liposarcoma? An immunohistochemical study on 129 soft tissue tumours. J Clin Pathol 62(12):1127–1135

    Article  CAS  PubMed  Google Scholar 

  11. Evans HL (1979) Liposarcoma—study of 55 cases with a reassessment of its classification. Am J Surg Pathol 3(6):507–523

    Article  CAS  PubMed  Google Scholar 

  12. Keung EZ et al (2014) Predictors of outcomes in patients with primary retroperitoneal dedifferentiated liposarcoma undergoing surgery. J Am Coll Surg 218(2):206–217

    Article  PubMed  Google Scholar 

  13. Ghadimi MP et al (2011) Diagnosis, management, and outcome of patients with dedifferentiated liposarcoma systemic metastasis. Ann Surg Oncol 18(13):3762–3770

    Article  PubMed  Google Scholar 

  14. Keung EZ et al (2018) The clinical behavior of well differentiated liposarcoma can be extremely variable: a retrospective cohort study at a major sarcoma center. J Surg Oncol 117(8):1799–1805

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lucas DR et al (1994) Well-differentiated liposarcoma. The Mayo clinic experience with 58 cases. Am J Clin Pathol 102(5):677–683

    Article  CAS  PubMed  Google Scholar 

  16. Lahat G et al (2008) Resectable well-differentiated versus dedifferentiated liposarcomas: two Different diseases possibly requiring Different treatment approaches. Ann Surg Oncol 15(6):1585–1593

    Article  CAS  PubMed  Google Scholar 

  17. Bill KL et al (2016) SAR405838: A Novel and potent inhibitor of the MDM2:p53 axis for the treatment of dedifferentiated liposarcoma. Clin Cancer Res 22(5):1150–1160

    Article  CAS  PubMed  Google Scholar 

  18. Ray-Coquard I et al (2012) Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol 13(11):1133–1140

    Article  CAS  PubMed  Google Scholar 

  19. Kurzrock R et al (2012) A phase I study of MDM2 antagonist RG7112 in patients (pts) with relapsed/refractory solid tumors. J Clin Oncol 30(15).

  20. de Jonge M et al (2017) A phase I study of SAR405838, a novel human double minute 2 (HDM2) antagonist, in patients with solid tumours. Eur J Cancer 76:144–151

    Article  PubMed  Google Scholar 

  21. Wagner AJ et al (2017) Phase I trial of the human double minute 2 inhibitor MK-8242 in patients with advanced solid tumors. J Clin Oncol 35(12):1304–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laroche-Clary A et al (2017) Combined targeting of MDM2 and CDK4 is synergistic in dedifferentiated liposarcomas. J Hematol Oncol 10(1):123

    Article  PubMed  PubMed Central  Google Scholar 

  23. Serguienko A et al (2020) Accurate 3-gene-signature for early diagnosis of liposarcoma progression. Clin Sarcoma Res 10(1):4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hirata M et al (2019) Integrated exome and RNA sequencing of dedifferentiated liposarcoma. Nat Commun 10(1):5683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amin-Mansour A et al (2019) Genomic evolutionary patterns of leiomyosarcoma and liposarcoma. Clin Cancer Res 25(16):5135–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beird HC et al (2018) Genomic profiling of dedifferentiated liposarcoma compared to matched well-differentiated liposarcoma reveals higher genomic complexity and a common origin. Cold Spring Harb Mol Case Stud 4(2):a002386

    Article  PubMed  PubMed Central  Google Scholar 

  27. Somaiah N et al (2018) Targeted next generation sequencing of well-differentiated/dedifferentiated liposarcoma reveals novel gene amplifications and mutations. Oncotarget 9(28):19891–19899

    Article  PubMed  PubMed Central  Google Scholar 

  28. Asano N et al (2017) Frequent amplification of receptor tyrosine kinase genes in well-differentiated/dedifferentiated liposarcoma. Oncotarget 8(8):12941–12952

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mazzu YZ et al (2017) miR-193b-regulated signaling networks serve as tumor suppressors in liposarcoma and promote adipogenesis in adipose-derived stem cells. Can Res 77(21):5728–5740

    Article  CAS  Google Scholar 

  30. Creytens D et al (2015) Characterization of the 12q amplicons in lipomatous soft tissue tumors by multiplex ligation-dependent probe amplification-based copy number analysis. Anticancer Res 35(4):1835–1842

    CAS  PubMed  Google Scholar 

  31. Ugras S et al (2011) Small RNA sequencing and functional characterization reveals MicroRNA-143 tumor suppressor activity in liposarcoma. Cancer Res 71(17):5659–5669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou Y et al (2014) Liposarcoma miRNA signatures identified from genome-wide miRNA expression profiling. Future Oncol 10(8):1373–1386

    Article  CAS  PubMed  Google Scholar 

  33. Lazar AJ et al (2017) Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 171(4):950

    Article  PubMed Central  Google Scholar 

  34. Fakharzadeh SS, Trusko SP, George DL (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10(6):1565–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jour G et al (2015) Prognostic relevance of Federation Nationale des Centres de Lutte Contre le Cancer grade and MDM2 amplification levels in dedifferentiated liposarcoma: a study of 50 cases. Mod Pathol 28(1):37–47

    Article  CAS  PubMed  Google Scholar 

  36. Ricciotti RW et al (2017) High amplification levels of MDM2 and CDK4 correlate with poor outcome in patients with dedifferentiated liposarcoma: a cytogenomic microarray analysis of 47 cases. Cancer Genet 218:69–80

    Article  PubMed  Google Scholar 

  37. Bill KLJ et al (2019) Degree of MDM2 amplification affects clinical outcomes in dedifferentiated liposarcoma. Oncologist 24(7):989–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kruiswijk F, Labuschagne CF, Vousden KH (2015) p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 16(7):393–405

    Article  CAS  PubMed  Google Scholar 

  39. Momand J et al (1992) The Mdm2 oncogene product forms a complex with the P53 protein and inhibits P53-mediated transactivation. Cell 69(7):1237–1245

    Article  CAS  PubMed  Google Scholar 

  40. Haupt Y et al (1997) Mdm2 promotes the rapid degradation of p53. Nature 387(6630):296–299

    Article  CAS  PubMed  Google Scholar 

  41. Honda R, Tanaka H, Yasuda H (1997) Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420(1):25–27

    Article  CAS  PubMed  Google Scholar 

  42. Vassilev LT et al (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303(5659):844–848

    Article  CAS  PubMed  Google Scholar 

  43. Burgess A et al (2016) Clinical overview of MDM2/X-targeted therapies. Frontiers Oncol 6:7

    Article  Google Scholar 

  44. Ding Q et al (2013) Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem 56(14):5979–5983

    Article  CAS  PubMed  Google Scholar 

  45. Laroche A et al (2017) MDM2 antagonists synergize with PI3K/mTOR inhibition in well-differentiated/dedifferentiated liposarcomas. Oncotarget 8(33):53968–53977

    Article  PubMed  PubMed Central  Google Scholar 

  46. Roy S et al (2020) MDM2 antagonists induce a paradoxical activation of Erk1/2 through a P53-dependent mechanism in dedifferentiated liposarcomas: implications for combinatorial strategies. Cancers (Basel) 12(8):2253

    Article  CAS  Google Scholar 

  47. Dadone-Montaudie B et al (2020) Novel therapeutic insights in dedifferentiated liposarcoma: a role for FGFR and MDM2 dual targeting. Cancers (Basel) 12(10):3058

    Article  CAS  Google Scholar 

  48. Bauer TM et al (2018) A phase 1 study of MDM2 inhibitor DS-3032b in patients with well/de-differentiated liposarcoma (WD/DD LPS), solid tumors (ST) and lymphomas (L). J Clin Oncol 36(15):11514–11514

    Article  Google Scholar 

  49. Rasco DW et al (2019) A phase I study of a novel MDM2 antagonist APG-115 in patients with advanced solid tumors. J Clin Oncol 37(15):3126–3126

    Article  Google Scholar 

  50. Ozenne P et al (2010) The ARF tumor suppressor: structure, functions and status in cancer. Int J Cancer 127(10):2239–2247

    Article  CAS  PubMed  Google Scholar 

  51. Moll UM, Petrenko O (2003) The MDM2-p53 interaction. Mol Cancer Res 1(14):1001–1008

    CAS  PubMed  Google Scholar 

  52. Riscal R et al (2016) Chromatin-bound MDM2 regulates serine metabolism and redox homeostasis independently of p53. Mol Cell 62(6):890–902

    Article  CAS  PubMed  Google Scholar 

  53. Cisse MY et al (2020) Targeting MDM2-dependent serine metabolism as a therapeutic strategy for liposarcoma. Sci Translation Med 12(547):2163

    Article  Google Scholar 

  54. Binh MB et al (2005) MDM2 and CDK4 immunostainings are useful adjuncts in diagnosing well-differentiated and dedifferentiated liposarcoma subtypes: a comparative analysis of 559 soft tissue neoplasms with genetic data. Am J Surg Pathol 29(10):1340–1347

    Article  PubMed  Google Scholar 

  55. Matsushime H et al (1992) Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71(2):323–334

    Article  CAS  PubMed  Google Scholar 

  56. Lee SE et al (2014) High level of CDK4 amplification is a poor prognostic factor in well-differentiated and dedifferentiated liposarcoma. Histol Histopathol 29(1):127–138

    CAS  PubMed  Google Scholar 

  57. Lee S et al (2014) CDK4 amplification predicts recurrence of well-differentiated liposarcoma of the abdomen. PLoS ONE 9(8):e99452

    Article  PubMed  PubMed Central  Google Scholar 

  58. Saada-Bouzid E et al (2015) Prognostic value of HMGA2, CDK4, and JUN amplification in well-differentiated and dedifferentiated liposarcomas. Mod Pathol 28(11):1404–1414

    Article  CAS  PubMed  Google Scholar 

  59. Zhang YX et al (2014) Antiproliferative effects of CDK4/6 inhibition in CDK4-amplified human liposarcoma in vitro and in vivo. Mol Cancer Ther 13(9):2184–2193

    Article  CAS  PubMed  Google Scholar 

  60. Dickson MA et al (2013) Phase II trial of the CDK4 inhibitor PD0332991 in patients with advanced CDK4-amplified well-differentiated or dedifferentiated liposarcoma. J Clin Oncol 31(16):2024–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kamb A et al (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264(5157):436–440

    Article  CAS  PubMed  Google Scholar 

  62. Li J, Poi MJ, Tsai MD (2011) Regulatory mechanisms of tumor suppressor P16(INK4A) and their relevance to cancer. Biochemistry 50(25):5566–5582

    Article  CAS  PubMed  Google Scholar 

  63. Kato J et al (1993) Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 7(3):331–342

    Article  CAS  PubMed  Google Scholar 

  64. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366(6456):704–707

    Article  CAS  PubMed  Google Scholar 

  65. Italiano A et al (2009) Clinical and biological significance of CDK4 amplification in well-differentiated and dedifferentiated liposarcomas. Clin Cancer Res 15(18):5696–5703

    Article  CAS  PubMed  Google Scholar 

  66. Cerami E et al (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2(5):401–404

    Article  PubMed  Google Scholar 

  67. Gao JJ et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1

    Article  PubMed  PubMed Central  Google Scholar 

  68. Thanos D, Maniatis T (1992) The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell 71(5):777–789

    Article  CAS  PubMed  Google Scholar 

  69. Xi Y et al (2016) HMGA2 promotes adipogenesis by activating C/EBPbeta-mediated expression of PPARgamma. Biochem Biophys Res Commun 472(4):617–623

    Article  CAS  PubMed  Google Scholar 

  70. Gattas GJF et al (1999) HMGIC expression in human adult and fetal tissues and in uterine leiomyomata. Genes Chromosom Cancer 25(4):316–322

    Article  CAS  PubMed  Google Scholar 

  71. Nishino J et al (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf Expression. Cell 135(2):227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Narita M et al (2006) A novel role for high-mobility group a proteins in cellular senescence and heterochromatin formation. Cell 126(3):503–514

    Article  CAS  PubMed  Google Scholar 

  73. Fusco A, Fedele M (2007) Roles of HMGA proteins in cancer. Nat Rev Cancer 7(12):899–910

    Article  CAS  PubMed  Google Scholar 

  74. Pentimalli F et al (2003) Suppression of HMGA2 protein synthesis could be a tool for the therapy of well differentiated liposarcomas overexpressing HMGA2. Can Res 63(21):7423–7427

    CAS  Google Scholar 

  75. Jankowski SA et al (1994) SAS, a gene amplified in human sarcomas, encodes a new member of the transmembrane 4 superfamily of proteins. Oncogene 9(4):1205–1211

    CAS  PubMed  Google Scholar 

  76. Yanez-Mo M et al (2009) Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes. Trends Cell Biol 19(9):434–446

    Article  CAS  PubMed  Google Scholar 

  77. Hemler ME (2014) Tetraspanin proteins promote multiple cancer stages. Nat Rev Cancer 14(1):49–60

    Article  CAS  PubMed  Google Scholar 

  78. Denis CJ et al (2013) Carboxypeptidase M in apoptosis, adipogenesis and cancer. Clin Chim Acta 415:306–316

    Article  CAS  PubMed  Google Scholar 

  79. Kanojia D et al (2015) Genomic landscape of liposarcoma. Oncotarget 6(40):42429–42444

    Article  PubMed  PubMed Central  Google Scholar 

  80. Park JH, Roeder RG (2006) GAS41 is required for repression of the p53 tumor suppressor pathway during normal cellular proliferation. Mol Cell Biol 26(11):4006–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Barretina J et al (2010) Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nat Genet 42(8):715–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kouhara H et al (1997) A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 89(5):693–702

    Article  CAS  PubMed  Google Scholar 

  83. Wang X et al (2011) High-resolution genomic mapping reveals consistent amplification of the fibroblast growth factor receptor substrate 2 gene in well-differentiated and dedifferentiated liposarcoma. Genes Chromosomes Cancer 50(11):849–858

    Article  CAS  PubMed  Google Scholar 

  84. Zhang K et al (2013) Amplification of FRS2 and activation of FGFR/FRS2 signaling pathway in high-grade liposarcoma. Cancer Res 73(4):1298–1307

    Article  CAS  PubMed  Google Scholar 

  85. Hanes R et al (2016) Preclinical evaluation of potential therapeutic targets in dedifferentiated liposarcoma. Oncotarget 7(34):54583–54595

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hanes R et al (2019) Preclinical evaluation of the Pan-FGFR inhibitor LY2874455 in FRS2-amplified liposarcoma. Cells 8(2):189

    Article  CAS  PubMed Central  Google Scholar 

  87. Snyder EL et al (2009) c-Jun amplification and overexpression are oncogenic in liposarcoma but not always sufficient to inhibit the adipocytic differentiation programme. J Pathol 218(3):292–300

    Article  CAS  PubMed  Google Scholar 

  88. Sioletic S et al (2014) c-Jun promotes cell migration and drives expression of the motility factor ENPP2 in soft tissue sarcomas. J Pathol 234(2):190–202

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Toulmonde M et al (2015) Aplidin in patients with advanced dedifferentiated liposarcomas: a French Sarcoma Group Single-Arm Phase II study. Ann Oncol 26(7):1465–1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang P et al (2012) MiR-155 is a liposarcoma oncogene that targets casein kinase-1alpha and enhances beta-catenin signaling. Cancer Res 72(7):1751–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vincenzi B et al (2015) Deregulation of dicer and mir-155 expression in liposarcoma. Oncotarget 6(12):10586–10591

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yu PY et al (2018) miR-133a function in the pathogenesis of dedifferentiated liposarcoma. Cancer Cell Int 18:89

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cao Y, Zheng J, Lv C (2019) miR-199a-3p knockdown inhibits dedifferentiated liposarcoma (DDLPS) cell viability and enhances apoptosis through targeting casein kinase-1 alpha (CK1α). RSC Adv 9(39):22755–22763

    Article  CAS  Google Scholar 

  94. Takada I, Kouzmenko AP, Kato S (2009) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5(8):442–447

    Article  CAS  PubMed  Google Scholar 

  95. Chen Q et al (2016) Fate decision of mesenchymal stem cells: adipocytes or osteoblasts. Cell Death Differ 23(7):1128–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tammela T et al (2017) A Wnt-producing niche drives proliferative potential and progression in lung adenocarcinoma. Nature 545(7654):355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nabhan AN et al (2018) Single-cell Wnt signaling niches maintain stemness of alveolar type 2 cells. Science 359(6380):1118–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650

    Article  CAS  PubMed  Google Scholar 

  99. Ross SE et al (2000) Inhibition of adipogenesis by Wnt signaling. Science 289(5481):950–953

    Article  CAS  PubMed  Google Scholar 

  100. Hanna A, Shevde LA (2016) Hedgehog signaling: modulation of cancer properies and tumor mircroenvironment. Mol Cancer 15:24

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rusiecki D et al (2017) Progression of atypical extraventricular neurocytoma to anaplastic ganglioglioma. Hum Pathol 59:125–130

    Article  PubMed  Google Scholar 

  102. Suh JM et al (2006) Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab 3(1):25–34

    Article  CAS  PubMed  Google Scholar 

  103. Drummond CJ et al (2018) Hedgehog pathway drives fusion-negative rhabdomyosarcoma initiated from non-myogenic endothelial progenitors. Cancer Cell 33(1):108–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Siebel C, Lendahl U (2017) Notch signaling in development, tissue homeostasis, and disease. Physiol Rev 97(4):1235–1294

    Article  CAS  PubMed  Google Scholar 

  105. Sandel DA et al (2018) Notch3 is involved in adipogenesis of human adipose-derived stromal/stem cells. Biochimie 150:31–36

    Article  CAS  PubMed  Google Scholar 

  106. Nueda ML et al (2018) DLK proteins modulate NOTCH signaling to influence a brown or white 3T3-L1 adipocyte fate. Sci Reports 8:16923

    Google Scholar 

  107. Bi P et al (2016) Notch activation drives adipocyte dedifferentiation and tumorigenic transformation in mice. J Exp Med 213(10):2019–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chaux A et al (2012) Immunohistochemical evidence of dysregulation of the mammalian target of rapamycin pathway in primary and metastatic pheochromocytomas. Urology 80(3):736

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Abbie Basson Sarcoma Foundation Ltd, Kicking Goals for Xav Foundation, Australia and New Zealand Sarcoma Association and the University of Western Australia for supporting this study.

Funding

This work was supported by the Abbie Basson Sarcoma Foundation Ltd., Kicking Goals for Xav Foundation (grant nos. 43), Australia and New Zealand Sarcoma Association and the University of Western Australia.

Author information

Authors and Affiliations

Authors

Contributions

Jun Lu wrote and edited the manuscript; David Wood reviewed the manuscript and supervised the entire work; Evan Ingley reviewed and edited the manuscript; Sulev Koks and Daniel Wong reviewed the manuscript.

Corresponding author

Correspondence to Jun Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Wood, D., Ingley, E. et al. Update on genomic and molecular landscapes of well-differentiated liposarcoma and dedifferentiated liposarcoma. Mol Biol Rep 48, 3637–3647 (2021). https://doi.org/10.1007/s11033-021-06362-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06362-5

Keywords