Skip to main content

Advertisement

Log in

First de novo genome specific development, characterization and validation of simple sequence repeat (SSR) markers in Genus Salvadora

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Salvadoraceae constitutes ecologically imperative desert families of 3 genera—Azima, Dobera and Salvadora. Under genus Salvadora of this family, S. oleoides is a keystone species of socio-economic and medicinal value. This species naturally grows in the arid zones but currently experiencing severe fragmentation due to land use change and reduced regeneration, which may have resulted in the depletion of genetic diversity. Hence, it is up-most important to develop genomic resources for studying the population genetics in S. oleoides. This study aims to develop robust microsatellites markers, which were not yet reported in genus Salvodora due to lack of genome sequence information. We developed novel microsatellites markers in S. oleoides using Illumina paired-end sequencing technology. In total, 14,552 simple sequence repeat (SSR) markers were successfully designed from 21,055 microsatellite repeats detected in the 13 Gb raw sequence data. Afterwards, a subset of 101 SSRs were randomly selected and validated, 94 primers were successfully amplified and 34 showed polymorphisms. These SSRs were used to estimate the measures of genetic diversity in three natural populations of state Rajasthan and Gujarat. Importantly, average number of alleles (Na), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphism information content (PIC) were recorded as 2.4, 0.529, 0.357, and 0.326, respectively. Furthermore, 15 primers were evaluated in S. persica for cross-transferability, and all were successfully amplified but only eight showed polymorphisms. This study has been conducted first time for S. oleoides and pioneer among the native species of arid-zone in India.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data files have been uploaded and clearly written in the manuscript.

Code availability

All have been mentioned in the manuscript text.

References

  1. Bhandari MM (1978) Flora of Indian desert. Scientific Publisher, Jodhpur, p 471

    Google Scholar 

  2. Duhan A, Chauhan BM, Punia D (1992) Nutritional value of some non-conventional plant foods of India. Plant Food Hum Nutr 42:193–200. https://doi.org/10.1007/BF02193926

    Article  CAS  Google Scholar 

  3. Khan T (1997) Conservation of biodiversity in western India. Environmentalist 17:283–287. https://doi.org/10.1023/A:1018501411555

    Article  Google Scholar 

  4. This P, Jung A, Boccacci P, Borrego J et al (2004) Development of a standard set of microsatellite reference alleles for identification of grape cultivars. Theor Appl Genet 109:1448–1458. https://doi.org/10.1007/s00122-004-1760-3

    Article  CAS  PubMed  Google Scholar 

  5. Park YJ, Lee JK, Kim NS (2009) Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops. Molecules 14:4546–4569. https://doi.org/10.3390/molecules14114546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsykun T, Rellstab C, Dutech C et al (2017) Comparative assessment of SSR and SNP markers for inferring the population genetic structure of the common fungus Armillaria cepistipes. Heredity 119:371–380. https://doi.org/10.1038/hdy.2017.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. González-Varo JP, Carvalho CS, Arroyo JM, Jordano P (2017) Unravelling seed dispersal through fragmented landscapes: frugivore species operate unevenly as mobile links. Mol Ecol 26:4309–4321. https://doi.org/10.1111/mec.14181

    Article  PubMed  Google Scholar 

  8. Martínez-López V, García C, Zapata V, Robledano F, De la Rúa P (2020) Intercontinental long-distance seed dispersal across the Mediterranean Basin explains population genetic structure of a bird-dispersed shrub. Mol Ecol 29:1408–1420. https://doi.org/10.1111/mec.15413

    Article  PubMed  Google Scholar 

  9. Grassi F, Cazzaniga E, Minuto L et al (2005) Evaluation of biodiversity and conservation strategies in Pancratium maritimum L. for the Northern Tyrrhenian Sea. Biodivers Conser 14:2159–2169. https://doi.org/10.1007/s10531-004-4666-0

    Article  Google Scholar 

  10. Wang L, Guo J, Zhao GF (2006) Genetic diversity of the endangered and endemic species Psathyrostachys huashanica natural populations using simple sequence repeats (SSRs) markers. Biochem Syst Ecol 34:310–318. https://doi.org/10.1016/j.bse.2005.09.009

    Article  CAS  Google Scholar 

  11. Liu Z, Shao W, Shen Y, Ji M, Chen W, Ye Y, Shen Y (2018) Characterization of new microsatellite markers based on the transcriptome sequencing of Clematis finetiana. Hereditas 155:23. https://doi.org/10.1186/s41065-018-0060-x

    Article  PubMed  PubMed Central  Google Scholar 

  12. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  13. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc

  14. Ewels P, Magnusson M, Lundin S, Kaller M (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 32:3047–3048. https://doi.org/10.1093/bioinformatics/btw354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Simpson JT, Wong K, Jackman SD, Schein JE et al (2009) ABySS: A parallel assembler for short read sequence data. Genome Res 19:1117–1123. https://doi.org/10.1101/gr.089532.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tempel S (2012) Using and understanding RepeatMasker. Mobile Genet Elem. https://doi.org/10.1007/978-1-61779-603-6_2

    Article  Google Scholar 

  17. Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583–2585. https://doi.org/10.1093/bioinformatics/btx198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  19. Kanehisa M (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30. https://doi.org/10.1093/nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983. https://doi.org/10.1093/bioinformatics/btp303

    Article  CAS  PubMed  Google Scholar 

  21. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  22. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129. https://doi.org/10.1093/bioinformatics/bti282

    Article  CAS  PubMed  Google Scholar 

  23. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goncalves DJP et al (2019) Incongruence between gene trees and species trees and phylogenetic signal variation in plastid genes. Mol Phylogenet Evol 138:219–232. https://doi.org/10.1016/j.ympev.2019.05.022

    Article  CAS  PubMed  Google Scholar 

  25. Saini S, Yadav JP (2013) Genetic variation in natural population of Salvadora oleoides: an important medicinal plant that need conservation. Asian J Plant Sci Res 3:20–27

    Google Scholar 

  26. Yadav JP, Manila SK, Yadav SK, Yadav S (2014) Assessment of genetic diversity using RAPD marker among different accessions of Salvadora oleoides of North-West India. Biores Bull 4:1–7

    Google Scholar 

  27. Bast F, Kaur N (2017) Nuclear and plastid DNA sequence-based molecular phylogeography of Salvadora oleoides (Salvadoraceae) in Punjab, India reveals allopatric speciation in anthropogenic islands due to agricultural expansion. J Phylogenet Evol Biol 5:1–7. https://doi.org/10.4172/2329-9002.1000180

    Article  CAS  Google Scholar 

  28. Abdelkrim J, Robertson B, Stanton JA, Gemmell N (2018) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46(3):185–192. https://doi.org/10.2144/000113084

    Article  CAS  Google Scholar 

  29. Taheri S, Abdullah TL, Yusop MR, Hanafi MM et al (2018) Mining and development of novel ssr markers using next generation sequencing (NGS) data in plants. Molecules 23:399. https://doi.org/10.3390/molecules23020399

    Article  CAS  PubMed Central  Google Scholar 

  30. Yin Q, Huang C, Huang Y, Chen S, Ye H, Fan Q, Liao W (2018) Identification and development of microsatellite markers in Hamamelis mollis (Hamamelidaceae). Appl Plant Sci 6:e1189. https://doi.org/10.1002/aps3.1189

    Article  Google Scholar 

  31. Huang C, Yin Q, Khadka D, Meng K, Fan Q, Chen S, Liao W (2019) Identification and development of microsatellite (SSRs) makers of Exbucklandia (Hamamelidaceae) by high-throughput sequencing. Mol Biol Rep 46:3381–3386. https://doi.org/10.1007/s11033-019-04800-z

    Article  CAS  PubMed  Google Scholar 

  32. Tinio CE, Ueno S, Uchiyama K, Maldia LSJ, Tomaru N (2019) Development of microsatellite markers from genomic DNA of Parashorea malaanonan (Dipterocarpaceae) using next-generation sequencing. Silvae Genetica 68:22–25. https://doi.org/10.2478/sg-2019-0004

    Article  Google Scholar 

  33. Liu FM, Hong Z, Yang ZJ, Zhang NN, Liu XJ, Xu DP (2019) De Novo transcriptome analysis of Dalbergia odorifera T. Chen (Fabaceae) and transferability of SSR markers developed from the transcriptome. Forests 10:1–16. https://doi.org/10.3390/f10020098

    Article  Google Scholar 

  34. Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109(2):361–369. https://doi.org/10.1007/s00122-004-1635-7

    Article  CAS  PubMed  Google Scholar 

  35. Hou B, Feng S, Wu Y (2017) Systemic identification of Hevea brasiliensis EST-SSR markers and primer screening. J Nucleic Acids. https://doi.org/10.1155/2017/6590902

    Article  PubMed  PubMed Central  Google Scholar 

  36. Garcia C, Guichoux E, Hampe A (2018) A comparative analysis between SNPs and SSRs to investigate genetic variation in a juniper species (Juniperus phoenicea ssp. turbinata). Tree Genet Genomes 14:87. https://doi.org/10.1007/s11295-018-1301-x

    Article  Google Scholar 

  37. Xia X, Luan LL, Qin G, Yu LF, Wang ZW, Dong WC et al (2017) Using the Genome-wide analysis of SSR and ILP markers in trees: diversity profiling, alternate distribution, and applications in duplication. Sci Rep 7:17902. https://doi.org/10.1038/s41598-017-17203-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Soares ANR, Vitoria MF, Nascimento ALS, Ledo AS et al (2016) Genetic diversity in natural populations of mangaba in Sergipe, the largest producer State in Brazil. Genet Mol Res 15:3. https://doi.org/10.4238/gmr.15038624

    Article  Google Scholar 

  39. Ouinsavi C, Sokpon N, Bousquet J, Newton CH, Khasa DP (2006) Novel microsatellite DNA markers for the threatened African endemic tree species, Milicia excelsa (Moraceae), and cross-species amplification in Milicia regia. Mol Ecol Notes 6:480–483. https://doi.org/10.1111/j.1471-8286.2006.01281.x

    Article  CAS  Google Scholar 

  40. Chase M, Kesseli R, Bawa K (1996) Microsatellite markers for population and conservation genetics of tropical trees. Am J Bot 83:51. https://doi.org/10.1002/j.1537-2197.1996.tb13873.x

    Article  Google Scholar 

  41. Dayanandan S, Dole J, Bawa K, Kesseli R (1999) Population structure delineated with microsatellite markers in fragmented populations of a tropical tree, Carapa guianensis (Meliaceae). Mol Ecol 8:1585–1592. https://doi.org/10.1046/j.1365-294x.1999.00735.x

    Article  CAS  PubMed  Google Scholar 

  42. Ferrara G, Giancaspro A, Mazzeo A, Giove SL et al (2014) Characterization of pomegranate (Punica granatum L.) genotypes collected in Puglia region, Southeastern Italy. Sci Horticult 178:70–78. https://doi.org/10.1016/j.scienta.2014.08.007

    Article  Google Scholar 

  43. Anand SS, Thakur S, Gargi M, Choudhary S, Bhardwaj P (2017) Development and characterization of genomic microsatellite markers in Prosopis cineraria. Curr Plant Biol 9–10:37–42. https://doi.org/10.1016/j.cpb.2017.03.001

    Article  Google Scholar 

  44. Rai MK, Shekhawat JK, Kataria V, Shekhawat NS (2017) Cross species transferability and characterization of microsatellite markers in Prosopis cineraria, a multipurpose tree species of Indian Thar Desert. Arid Land Res Manag 31:462–471. https://doi.org/10.1080/15324982.2017.1338791

    Article  CAS  Google Scholar 

  45. Assoumane AA, Vaillant A, Mayaki AZ, Verhaegen D (2009) Isolation and characterization of microsatellite markers for Acacia senegal (L.) Willd., a multipurpose arid and semi-arid tree. Mol Ecol Resour 9:1380–1383. https://doi.org/10.1111/j.1755-0998.2009.02669.x

    Article  CAS  PubMed  Google Scholar 

  46. Monfared MA, Samsampour D, Sharifi-Sirchi GR, Sadeghi F (2018) Assessment of genetic diversity in Salvadora persica L. based on inter simple sequence repeat (ISSR) genetic marker. J Genet Eng Biotechnol 16:661–667. https://doi.org/10.1016/j.jgeb.2018.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lu W, Arnold RJ, Zhang L et al (2018) Genetic diversity and structure through three cycles of a Eucalyptus urophylla S.T. Blake breeding program. Forests 9:372. https://doi.org/10.3390/f9070372

    Article  Google Scholar 

  48. Xue L, Liu Q, Hu H et al (2018) The southwestern origin and eastward dispersal of pear (Pyrus pyrifolia) in East Asia revealed by comprehensive genetic structure analysis with SSR markers. Tree Genet Genomes 14:48. https://doi.org/10.1007/s11295-018-1255-z

    Article  Google Scholar 

  49. Hepsibha BT, Premalakshmi V, Sekar T (2010) Genetic diversity in Azima tetracantha (Lam) assessed through RAPD analysis. Indian J Sci Technol 3:170–173

    Article  Google Scholar 

  50. Mottura MC, Finkeldey R, Verga AR, Gailing O (2005) Development and characterisation of microsatellite markers for Prosopis chilensis and Prosopis flexuosa and cross-amplification. Mol Ecol Note 5:487–489. https://doi.org/10.1111/j.1471-8286.2005.00965.x

    Article  CAS  Google Scholar 

  51. Hamza NB (2010) Genetic variation within and among three invasive Prosopis juliflora (Leguminosae) populations in the River Nile State, Sudan. Int J Genet Mol Biol 2:92–100

    CAS  Google Scholar 

  52. Sharma SK, Kumar S, Rawat D, Kumaria S, Kumar A, Rao SR (2011) Genetic diversity and gene flow estimation in Prosopis cineraria (L.) Druce: a key stone tree species of Indian Thar Desert. Biochem Syst Ecol 39:9–13. https://doi.org/10.1016/j.bse.2010.12.018

    Article  CAS  Google Scholar 

  53. Alves FM, Zucci MI, Azevedo-Tozzi AM, Sartori ALB, Souza AP (2014) Characterization of microsatellite markers developed from Prosopis rubriflora and Prosopis ruscifolia (Leguminosae-Mimosoideae), legume species that are used as models for genetic diversity studies in Chaquenian areas under anthropization in South America. BMC Res Note 7:375. https://doi.org/10.1186/1756-0500-7-375

    Article  Google Scholar 

  54. Pomponio MF, Acuña C, Pentreath V, Lauenstein DL et al (2015) Characterization of functional SSR markers in Prosopis alba and their transferability across Prosopis species. For Syst 24:eRC04. https://doi.org/10.5424/fs/2015242-07188

    Article  Google Scholar 

  55. Nowakowska JA (2016) Microsatellite markers in analysis of forest-tree populations. In: Abdurakhmonov IY (ed) Microsatellite markers. IntechOpen, London

    Google Scholar 

  56. Xu Y, Ma RC, Xie H, Liu JT, Cao MQ (2004) Development of SSR markers for the phylogenetic analysis of almond trees from China and the Mediterranean region. Genome 47:1091–1104. https://doi.org/10.1139/g04-058

    Article  CAS  PubMed  Google Scholar 

  57. Haq SU, Jain R, Sharma M, Kachhwaha S, Kothari SL (2014) Identification and characterization of microsatellites in expressed sequence tags and their cross transferability in different plants. Int J Genom 863948:1–12. https://doi.org/10.1155/2014/863948

    Article  CAS  Google Scholar 

  58. Torales SL, Rivarola M, Gonzalez S, Inza MV, Pomponio MF, Fernandez P et al (2018) De novo transcriptome sequencing and SSR markers development for Cedrela balansae C.DC., a native tree species of northwest Argentina. PLoS ONE 13(12):e0203768. https://doi.org/10.1371/journal.pone.0203768

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The financial support by the Ministry of Environment, Forest and Climate change (MoEF&CC), Government of India, New Delhi under Grant No. 14/8/2013-RE; dated 09th May, 2016 is gratefully acknowledged. The authors are thankful to the Director, FRI for providing the research facilities. The authors wish to thank the reviewer for constructive comments on the early version of the manuscript.

Funding

Ministry of Environment, Forest and Climate change (MoEF&CC), Government of India, New Delhi under Grant No. 14/8/2013-RE; dated 09th May, 2016.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Maneesh S. Bhandari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Accession No.: PRJNA608853.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 kb)

Supplementary file2 (JPG 1129 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhandari, M.S., Meena, R.K., Shamoon, A. et al. First de novo genome specific development, characterization and validation of simple sequence repeat (SSR) markers in Genus Salvadora. Mol Biol Rep 47, 6997–7008 (2020). https://doi.org/10.1007/s11033-020-05758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05758-z

Keywords

Navigation