Skip to main content
Log in

Tetrazolium reduction assays under-report cell death provoked by clinically relevant concentrations of proteasome inhibitors

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

High throughput cell viability screening assays often capitalize on the ability of active enzymes or molecules within viable cells to catalyze a quantifiable chemical reaction. The tetrazolium reduction (MTT) assay relies on oxidoreductases to reduce tetrazolium into purple formazan crystals that are solubilized so absorbance reflects viability, while other assays use cellular ATP to catalyze a luminescence-emitting reaction. It is therefore important to know how accurately these assays report cellular responses, as cytotoxic anti-cancer agents promote cell death via a variety of signaling pathways, some of which may alter how these assays work. In this study, we compared the magnitude of cytotoxicity to different cell types provoked by currently used anti-cancer agents, using three different cell viability assays. We found the three assays were consistent in reporting the viability of cells treated with chemotherapy drugs or the BH3 mimetic navitoclax, but the MTT assay underreported the killing capacity of proteasome inhibitors. Additionally, the MTT assay failed to confirm the induction of caspase-mediated cell death by bortezomib at physiologically relevant concentrations, thereby mischaracterizing the mode of cell death. While the cell viability assays used allow for the rapid identification of novel cytotoxic compounds, our study emphasizes the importance for these screening assays to be complemented with a direct measure of cell death or another independent measure of cell viability. We caution researchers against using MTT assays for monitoring cytotoxicity induced by proteasome inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. https://doi.org/10.1016/0022-1759(83)90303-4

    Article  CAS  PubMed  Google Scholar 

  2. Lomakina GY, Modestova YA, Ugarova NN (2015) Bioluminescence assay for cell viability. Biochemistry (Mosc) 80(6):701–713. https://doi.org/10.1134/S0006297915060061

    Article  CAS  Google Scholar 

  3. Niles AL, Moravec RA, Eric Hesselberth P, Scurria MA, Daily WJ, Riss TL (2007) A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers. Anal Biochem 366(2):197–206. https://doi.org/10.1016/j.ab.2007.04.007

    Article  CAS  PubMed  Google Scholar 

  4. Guo KY, Han L, Li X, Yang AV, Lu J, Guan S, Li H, Yu Y, Zhao Y, Yang J, Zhang H (2017) Novel proteasome inhibitor delanzomib sensitizes cervical cancer cells to doxorubicin-induced apoptosis via stabilizing tumor suppressor proteins in the p53 pathway. Oncotarget 8(69):114123–114135. https://doi.org/10.18632/oncotarget.23166

    Article  PubMed  PubMed Central  Google Scholar 

  5. Foight GW, Ryan JA, Gullá SV, Letai A, Keating AE (2014) Designed BH3 peptides with high affinity and specificity for targeting Mcl-1 in cells. ACS Chem Biol 9(9):1962–1968. https://doi.org/10.1021/cb500340w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akasov R, Drozdova M, Zaytseva-Zotova D, Leko M, Chelushkin P, Marc A, Chevalot I, Burov S, Klyachko N, Vandamme T, Markvicheva E (2017) Novel doxorubicin derivatives: synthesis and cytotoxicity study in 2D and 3D in vitro models. Adv Pharm Bull 7(4):593–601. https://doi.org/10.15171/apb.2017.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Can Res 59(11):2615–2622

    CAS  Google Scholar 

  8. Weyburne ES, Wilkins OM, Sha Z, Williams DA, Pletnev AA, de Bruin G, Overkleeft HS, Goldberg AL, Cole MD, Kisselev AF (2017) Inhibition of the proteasome beta2 site sensitizes triple-negative breast cancer cells to beta5 inhibitors and suppresses Nrf1 activation. Cell Chem Biol 24(2):218–230. https://doi.org/10.1016/j.chembiol.2016.12.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Manasanch EE, Orlowski RZ (2017) Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 14(7):417–433. https://doi.org/10.1038/nrclinonc.2016.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marinello J, Delcuratolo M, Capranico G (2018) Anthracyclines as Topoisomerase II poisons: from early studies to new perspectives. Int J Mol Sci 19(11):3480. https://doi.org/10.3390/ijms19113480

    Article  CAS  PubMed Central  Google Scholar 

  11. Singh R, Letai A, Sarosiek K (2019) Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 20(3):175–193. https://doi.org/10.1038/s41580-018-0089-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shekhar TM, Miles MA, Gupte A, Taylor S, Tascone B, Walkley CR, Hawkins CJ (2016) IAP antagonists sensitize murine osteosarcoma cells to killing by TNFα. Oncotarget 7(23):33866–33886. https://doi.org/10.18632/oncotarget.8980

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tada H, Shiho O, Kuroshima K, Koyama M, Tsukamoto K (1986) An improved colorimetric assay for interleukin 2. J Immunol Methods 93(2):157–165. https://doi.org/10.1016/0022-1759(86)90183-3

    Article  CAS  PubMed  Google Scholar 

  14. Miles MA, Harris MA, Hawkins CJ (2019) Proteasome inhibitors trigger mutations via activation of caspases and CAD, but mutagenesis provoked by the HDAC inhibitors vorinostat and romidepsin is caspase/CAD-independent. Apoptosis 24(5):404–413. https://doi.org/10.1007/s10495-019-01543-x

    Article  CAS  PubMed  Google Scholar 

  15. Patatsos K, Shekhar TM, Hawkins CJ (2018) Pre-clinical evaluation of proteasome inhibitors for canine and human osteosarcoma. Vet Comp Oncol. https://doi.org/10.1111/vco.12413

    Article  PubMed  Google Scholar 

  16. Sishi BJ, Loos B, van Rooyen J, Engelbrecht AMJT (2013) Doxorubicin induces protein ubiquitination and inhibits proteasome activity during cardiotoxicity. Toxicology 309:23–29

    Article  CAS  PubMed  Google Scholar 

  17. Tacar O, Sriamornsak P, Dass CR (2013) Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157–170. https://doi.org/10.1111/j.2042-7158.2012.01567.x

    Article  CAS  PubMed  Google Scholar 

  18. Ashkenazi A, Fairbrother WJ, Leverson JD, Souers AJ (2017) From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat Rev Drug Discov 16(4):273–284. https://doi.org/10.1038/nrd.2016.253

    Article  CAS  PubMed  Google Scholar 

  19. Zhang B, Gu Y (2015) Bortezomib inhibits gastric carcinoma HGC-27 cells through the phospho-Jun N-terminal kinase (p-JNK) pathway in vitro. Gene 559(2):164–171. https://doi.org/10.1016/j.gene.2015.01.035

    Article  CAS  PubMed  Google Scholar 

  20. Gong L, Yang B, Xu M, Cheng B, Tang X, Zheng P, Jing Y, Wu GJ (2014) Bortezomib-induced apoptosis in cultured pancreatic cancer cells is associated with ceramide production. Cancer Chemother Pharmacol 73(1):69–77. https://doi.org/10.1007/s00280-013-2318-3

    Article  CAS  PubMed  Google Scholar 

  21. Lai F, Shen Z, Wen H, Chen J, Zhang X, Lin P, Yin D, Cui H, Chen X (2017) A Morphological identification cell cytotoxicity assay using cytoplasm-localized fluorescent probe (CLFP) to distinguish living and dead cells. Biochem Biophys Res Commun 482(2):257–263. https://doi.org/10.1016/j.bbrc.2016.09.169

    Article  CAS  PubMed  Google Scholar 

  22. Yang Y, Lu Y, Wu QY, Hu HY, Chen YH, Liu WL (2015) Evidence of ATP assay as an appropriate alternative of MTT assay for cytotoxicity of secondary effluents from WWTPs. Ecotoxicol Environ Saf 122:490–496. https://doi.org/10.1016/j.ecoenv.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  23. Ross D, Siegel D (2017) Functions of NQO1 in cellular protection and CoQ10 metabolism and its potential role as a redox sensitive molecular switch. Front Physiol 8:595. https://doi.org/10.3389/fphys.2017.00595

    Article  PubMed  PubMed Central  Google Scholar 

  24. Moscovitz O, Tsvetkov P, Hazan N, Michaelevski I, Keisar H, Ben-Nissan G, Shaul Y, Sharon M (2012) A mutually inhibitory feedback loop between the 20S proteasome and its regulator, NQO1. Mol Cell 47(1):76–86. https://doi.org/10.1016/j.molcel.2012.05.049

    Article  CAS  PubMed  Google Scholar 

  25. Wang P, Henning SM, Heber D (2010) Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS ONE 5(4):e10202–e10202. https://doi.org/10.1371/journal.pone.0010202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by a Research Training Program Scholarship to M.A.H, a Cancer Council Victoria Postdoctoral Fellowship to M.A.M, and a grant from The Kids’ Cancer Project.

Funding

This study was funded by a Research Training Program Scholarship to M.A.H, a Cancer Council Victoria Postdoctoral Fellowship to M.A.M, and a grant from The Kids’ Cancer Project awarded to C.J.H.

Author information

Authors and Affiliations

Authors

Contributions

MAH and MAM designed and performed experiments and analyzed data. CJH devised the study and provided funds to conduct research. All authors wrote the manuscript.

Corresponding author

Correspondence to Mark A. Miles.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Consent for publication

All authors consent to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 410 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, M.A., Hawkins, C.J. & Miles, M.A. Tetrazolium reduction assays under-report cell death provoked by clinically relevant concentrations of proteasome inhibitors. Mol Biol Rep 47, 4849–4856 (2020). https://doi.org/10.1007/s11033-020-05530-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05530-3

Keywords

Navigation