Skip to main content
Log in

Characterisation of recombinant thermostable manganese-superoxide dismutase (NeMnSOD) from Nerium oleander

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Superoxide dismutase is one of the key antioxidant enzymes accountable for the eradication of free radicals generated during various metabolic processes. This is first study reporting a thermostable MnSOD obtained from a xerophytic plant, Nerium oleander. The full-length gene identified using Rapid amplification of cDNA ends revealed an open reading frame of 699 bp flanked by 5′UTR and 3′UTR of 134 bp and 198 bp respectively. The corresponding NeMnSOD protein was cloned and expressed in Escherichia coli. The purified protein yields a band of 25.4 kDa, which established a specific activity of 2617 units mg−1 of protein and under native condition yield bands of 52 kDa and 110 kDa, confirming the dimeric and tetrameric state of the protein. The Km and Vmax of 0.078 ± 0.008 mM and 1052.3 ± 33.59 units mg−1 of protein, respectively. The purified enzyme demonstrated thermostability by retaining more than 20% activity at a temperature 70 ℃. The enzyme functioned at pH range of 4–9.0 with maximum activity at pH 7.4. Sodium azide, effectively inhibited the activity of enzyme confirming it to be MnSOD. The enzyme activity was least affected on treatment with strong denaturants (Urea, guanidine HCl and SDS) and harsh chemicals (DTT, CHAPS and β-mercapto-ethanol) These experimental data validated with Insilco analysis revealed that NeMnSOD possessed thermo as well as kinetically stable moiety which can be further exploited with its applications in the field of pharmaceutical, food and cosmetic industry, which urge for such thermostable enzyme.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Czarnocka W, Karpiński S (2018) Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 122:4–20. https://doi.org/10.1016/j.freeradbiomed.2018.01.011

    CAS  PubMed  Google Scholar 

  2. Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19. https://doi.org/10.1016/j.tplants.2016.08.002

    CAS  PubMed  Google Scholar 

  3. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930. https://doi.org/10.1016/j.plaphy.2010.08.016

    CAS  PubMed  Google Scholar 

  4. Miao L, Clair DKS (2009) Free radical biology & medicine regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47:344–356. https://doi.org/10.1016/j.freeradbiomed.2009.05.018

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Miller AF (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586:585–595. https://doi.org/10.1016/j.febslet.2011.10.048

    CAS  PubMed  Google Scholar 

  6. Holley AK, Dhar SK, Xu Y, St Clair DK (2012) Manganese superoxide dismutase: beyond life and death. Amino Acids 42:139–158. https://doi.org/10.1007/s00726-010-0600-9

    CAS  PubMed  Google Scholar 

  7. Retnoningrum DS, Puji A, Dina R et al (2016) Unique characteristics of recombinant hybrid manganese superoxide dismutase from staphylococcus equorum and S. saprophyticus. Protein J 35:136–144. https://doi.org/10.1007/s10930-016-9650-5

    CAS  PubMed  Google Scholar 

  8. Venditti P, Di Stefano L, Di Meo S (2013) Mitochondrial metabolism of reactive oxygen species. Mitochondrion 13:71–82. https://doi.org/10.1016/j.mito.2013.01.008

    CAS  PubMed  Google Scholar 

  9. Navrot N, Rouhier N, Gelhaye E, Jacquot JP (2007) Reactive oxygen species generation and antioxidant systems in plant mitochondria. In: Physiologia Plantarum. 129:185–195. https://doi.org/10.1111/j.1399-3054.2006.00777.x

    CAS  Google Scholar 

  10. Kumar A, Sharma M, Bhardwaj PK et al (2016) Copper, zinc superoxide dismutase from Caragana jubata: a thermostable enzyme that functions under a broad pH and temperature window. Process Biochem 51:1434–1444. https://doi.org/10.1016/j.procbio.2016.06.025

    CAS  Google Scholar 

  11. Cannon RE, White JA, Scandalios JG (1987) Cloning of cDNA for maize superoxide dismutase 2 (SOD2). ProcNatlAcadSciUSA 84:179–183. https://doi.org/10.1073/pnas.84.1.179

    CAS  Google Scholar 

  12. Sakamoto A, Nosaka Y, Tanaka K (1993) Cloning and sequencing analysis of a complementary DNA for manganese-superoxide dismutase from rice (Oryza sativa L.). Plant Physiol 103:1477–1478. https://doi.org/10.1104/pp.103.4.1477

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in arabidopsis: An eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–650. https://doi.org/10.1104/pp.118.2.637

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bagnoli F, Giannino D, Caparrini S et al (2002) Molecular cloning, characterisation and expression of a manganese superoxide dismutase gene from peach (Prunus persica [L.] Batsch). Mol Genet Genomics 267:321–328. https://doi.org/10.1007/s00438-002-0664-7

    CAS  PubMed  Google Scholar 

  15. Il Kwon S, An CS (1999) Isolation and characterization of mitochondrial manganese superoxide dismutase (MnSOD) from Capsicum annuum L. Mol Cells (Springer Sci Bus Media BV) 9:625–631

    Google Scholar 

  16. Dong C, Li G, Li Z et al (2009) Molecular cloning and expression analysis of an Mn-SOD gene from Nelumbo nucifera. Appl Biochem Biotechnol 158:605–614. https://doi.org/10.1007/s12010-008-8410-1

    CAS  PubMed  Google Scholar 

  17. Que Y, Liu J, Xu L, Guo J, Chen R (2012) Molecular cloning and expression analysis of an Mnsuperoxide dismutase gene in sugarcane. Afr J Biotechnol 11(3):552–560. https://doi.org/10.5897/AJB10.2659

    CAS  Google Scholar 

  18. Bhatia K, Mal G, Bhar R et al (2018) Purification and characterization of thermostable superoxide dismutase from Anoxybacillus gonensis KA 55 MTCC 12684. Int J Biol Macromol 117:1133–1139. https://doi.org/10.1016/j.ijbiomac.2018.06.031

    CAS  PubMed  Google Scholar 

  19. Guo FX, Shi-jin E, Liu SA, et al (2008) Purification and characterization of a thermostable MnSOD from the thermophilic fungus Chaetomium thermophilum. Mycologia 100:375–380. https://doi.org/10.3852/06-111R

    CAS  PubMed  Google Scholar 

  20. Yu J, Yu X, Liu J (2004) A thermostable manganese-containing superoxide dismutase from pathogen Chlamydia pneumoniae. FEBS Lett 562:22–26. https://doi.org/10.1016/S0014-5793(04)00170-X

    CAS  PubMed  Google Scholar 

  21. Areekit S, Kanjanavas P, Khawsak P, Pakpitchareon A (2011) Cloning, expression, and characterization of thermotolerant manganese superoxide dismutase from Bacillus sp. MHS47. Int J Mol Sci 0067:844–856. https://doi.org/10.3390/ijms12010844

    CAS  Google Scholar 

  22. Zeng X, Cheng N, Zheng X et al (2015) Molecular cloning and characterization of two manganese superoxide dismutases from Miscanthus × giganteus. Plant Cell Rep 34:2137–2149. https://doi.org/10.1007/s00299-015-1857-y

    CAS  PubMed  Google Scholar 

  23. KG Singhal, GD Gupta (2012) Neuroprotective appraisal of methanolic extract of flowers of nerium oleander in a non classical rat model of alzheimer disease. Nat Prod Journale 2:235–245. https://doi.org/10.2174/2210315511202030235

    CAS  Google Scholar 

  24. Gayathri V, Ananthi S, Chandronitha C et al (2011) Cardioprotective effect of nerium oleander flower against isoproterenol-induced myocardial oxidative stress in experimental rats. J Cardiovasc Pharmacol Ther 16:96–104. https://doi.org/10.1177/1074248410381759

    PubMed  Google Scholar 

  25. Vinayagam A, Sudha PN (2011) Antioxidant activity of methanolic extracts of leaves and flowers of nerium indicum. Int J Pharm Sci Res 2:1548–1553

    Google Scholar 

  26. Kumar D, Al Hassan M, Naranjo MA et al (2017) Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS ONE 12:1–22. https://doi.org/10.1371/journal.pone.0185017

    CAS  Google Scholar 

  27. Gill SS, Anjum NA, Gill R, Yadav S, Hasanuzzaman M, Fujita M, Tuteja N (2015) Superoxide dismutase—mentor of abiotic stress tolerance in crop plants. Environ Sci Pollut Res 22:10375–10394. https://doi.org/10.1007/s11356-015-4532-5

    CAS  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  PubMed  Google Scholar 

  29. Scotto-Lavino E, Du G, Frohman MA (2006) 5′ End cdna Amplification Using Classic RACE. Nat Protoc 1:2555. https://doi.org/10.1038/nprot.2006.480

    CAS  PubMed  Google Scholar 

  30. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Schrödinger LLC (2015) The {PyMOL} Molecular Graphics System, Version~1.8

  32. He F (2011) Laemmli-SDS-PAGE. Bio-Protocol 1:e80. https://doi.org/10.21769/BioProtoc.80

    Google Scholar 

  33. Shevchenko A, Tomas H, Havli J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860. https://doi.org/10.1038/nprot.2006.468

    CAS  PubMed  Google Scholar 

  34. Janknegt PJ, Rijstenbil JW, Van De Poll WH, Gechev TS, Buma AGJ (2007) A comparison of quantitative and qualitative superoxide dismutase assays for application to low temperature microalgae. J Photochem Photobiol B 87:218–226. https://doi.org/10.1016/j.jphotobiol.2007.04.002

    CAS  PubMed  Google Scholar 

  35. Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566. https://doi.org/10.1016/0003-2697(87)90489-1

    CAS  PubMed  Google Scholar 

  36. Fridovich I (1975) Superoxide dismutases. Annu Rev Biochem 44:147–159. https://doi.org/10.1146/annurev.bi.44.070175.001051

    CAS  PubMed  Google Scholar 

  37. Babitha MP, Prakash HS, Shekar H (2002) Purification and partial characterization of manganese superoxide dismutase from downy mildew resistant Pearl Millet seedlings inoculated with Sclerospora graminicola. Plant Sci 163:917–924. https://doi.org/10.1016/S0168-9452(02)00238-8

    CAS  Google Scholar 

  38. Marques AT, Santos SP, Margarida G, Rodrigues MAA, Abreu IA, Roma V (2014) Expression, purification and crystallization of MnSOD from Arabidopsis thaliana. Acta Crystall Sec F 70:669–672. https://doi.org/10.1107/S2053230X14007687

    CAS  Google Scholar 

  39. Borrelli A, Schiattarella A, Bonelli P, Tuccillo FM, Buonaguro FM, Mancini A (2014) The functional role of mnsod as a biomarker of human diseases and therapeutic potential of a new isoform of a human recombinant MnSOD. Biomed Res Int 476789:11. https://doi.org/10.1155/2014/476789

    CAS  Google Scholar 

  40. Xu XJ, Zhou YJ, Ren DT, Bu HH, Feng JC, Wang GY (2014) Cloning and characterization of gene encoding a mn-containing superoxide dismutase in Eutrema halophilum. Biol Plant 58:105–113. https://doi.org/10.1007/s10535-013-0363-8

    CAS  Google Scholar 

  41. Vyas D, Kumar S (2005) Purification and partial characterization of a low temperature responsive Mn-SOD from tea (Camellia sinensis (L.) O Kuntze), Biochem. Biophys. Res. Commun. 329:831–838. https:// doi:10.1016/j.bbrc.2005.02.051

    CAS  PubMed  Google Scholar 

  42. Bingfeng WYW, Chuanping Y (2007) Cloning and functional characterization of a MnSOD gene from Tamarix androssowii. Mol Plant Breed 5:709–714

    Google Scholar 

  43. Yin, C., Zhao, W., Zhu, J., Zheng, L., Chen, L., & Ma, A. (2015). Cloning and characterization of a differentially expressed mitochondrial manganese superoxide dismutase gene from Pleurotus ostreatus. Ann Microbiol 65(3):1597–1606. https://doi.org/10.1007/s13213-014-0999-4

    Google Scholar 

  44. Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using targetp, signalp and related tools. Nat Protoc 2:953. https://doi.org/10.1038/nprot.2007.131

    CAS  PubMed  Google Scholar 

  45. Wu H, Zhang Y, Shi X, Zhang J, Ma E (2017) Overexpression Of Mn-superoxide dismutase in Oxya chinensis mediates increased malathion tolerance. Chemosphere 181:352–359. https://doi.org/10.1016/j.chemosphere.2017.04.087

    CAS  PubMed  Google Scholar 

  46. C. Dong, G. Li, Z. Li, H. Zhu, M. Zhou, Z. Hu, (2009) Molecular cloning and expression analysis of an Mn-SOD gene from Nelumbo nucifera, Appl. Biochem. Biotechnol. 158:605–614. https://doi.org/10.1007/s12010-008-8410-1

    PubMed  Google Scholar 

  47. T.H. Wu, M.H. Liao, W.Y. Kuo, C.H. Huang, H.L. Hsieh, T.L. Jinn, (2011) Characterization of copper/zinc and manganese superoxide dismutase in green bamboo (Bambusa oldhamii): cloning, expression and regulation, Plant Physiol. Biochem. 49:195–200. https://doi.org/10.1016/j.plaphy.2010.11.011

    CAS  PubMed  Google Scholar 

  48. Song NN, Zheng Y, Shi-Jin E, Li DC (2009) Cloning, expression, and characterization of thermostable manganese superoxide dismutase from Thermoascus aurantiacus var. levisporus. J Microbiol 47(1):123–130. https://doi.org/10.1007/s12275-008-0217-9

    CAS  PubMed  Google Scholar 

  49. J. Liu, J. Wang, M. Yin, H. Zhu, J. Lu, Z. Cui, (2011) Purification and characterization of superoxide dismutase from garlic. Food Bioprod. Process. 89:294–299. https://doi.org/10.1016/j.fbp.2010.07.003

    CAS  Google Scholar 

  50. P.M. Ekanayake, H.S. Kang, M. De Zyosa, Y. Jee, Y.H. Lee, J. Lee, (2006) Molecular cloning and characterization of mn-superoxide dismutase from disk abalone (Haliotis discus discus), Comp. Biochem. Physiol. B 145:318–324. https://doi.org/10.1016/j.cbpb.2006.08.004

    Google Scholar 

  51. L.S. Lai, P.C. Chang, C.T. Chang, (2008) Isolation and characterization of superoxide dismutase from wheat seedlings, J. Agric. Food Chem. 56:8121–8129. https://doi.org/10.1021/jf800859f

    CAS  PubMed  Google Scholar 

  52. A. Kumar, A. Kaachra, S. Bhardwaj, S. Kumar, (2014) Copper, zinc superoxide dismutase of Curcuma aromatica is a kinetically stable protein. Process Biochem. 49:1288–1296. https://doi.org/10.1016/j.procbio.2014.04.010

    CAS  Google Scholar 

  53. Y. Li, X. Kong, H. Zhang, (2019). Characteristics of a novel manganese superoxide dismutase of a hadal sea cucumber (Paelopatides Sp.) from the Mariana Trench, Mar. Drugs. 17:84 https://doi.org/10.3390/md17020084

    CAS  PubMed Central  Google Scholar 

  54. C. Bowler, T. Alliotte, M. De Loose, M. Van Montagu, D. Inzé, (1989) The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia., EMBO J. 8:31–38. https://doi.org/10.1002/j.1460-2075.1989.tb03345

  55. Sivaprakasam G, Singh D, Dhillon S, Malhotra SP, Ahlawat TR, Singh R (2004) Purification and characterization of superoxide dismutase from guava (Psidium guajava L.). Physiol Mol Biol Plants 10:59–64

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported in the form of fellowship by the Department of Science and Technology (DST) under INSPIRE scheme, Grant No IF140298.

Author information

Authors and Affiliations

Authors

Contributions

RG and RP conceived the idea and designed the experiments. RG along with PK and AC performed the experiment and analysed the data. RG and RP wrote the manuscript. RP gave all the critical revisions. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ramasare Prasad.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangwar, R., Kumari, P., Chatrath, A. et al. Characterisation of recombinant thermostable manganese-superoxide dismutase (NeMnSOD) from Nerium oleander. Mol Biol Rep 47, 3251–3270 (2020). https://doi.org/10.1007/s11033-020-05374-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-020-05374-x

Keywords

Navigation