Skip to main content
Log in

An adiponectin paralog protein, CTRP6 decreased the proliferation and invasion activity of oral squamous cell carcinoma cells: possible interaction with laminin receptor pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

C1q/tumor necrosis factor-related protein-6 (CTRP6), also known as CTRP6 is identified adiponectin paralog. Although recent studies have revealed that adiponectin has an inhibitory role in carcinogenesis, the role of CTRP6 in carcinogenesis remains unclear. In this study, we found that eukaryotic recombinant CTRP6 protein bound to the cell surface membrane of cultured oral squamous cell carcinoma cells by immunofluorescence staining. Screening of CTRP6 binding protein in expression library followed by co-immunoprecipitation assay revealed that CTRP6 bound to the precursor of laminin receptor. CTRP6 disturbed the binding of laminin to the laminin receptor. Interestingly, the eukaryotic recombinant CTRP6 protein significantly suppressed the proliferation and Matrigel invasion activity of oral squamous cell carcinoma SAS cells in a dose-dependent manner. Moreover, administration of CTRP6 significantly attenuated the growth of SAS cells in xenoplant mice model. Laminin and laminin receptor are known to be overexpressed and promote the tumor growth in OSCC. Combined together, the present findings suggest that CTRP6 could repress progression of oral squamous cell carcinoma cells, putatively through disrupting the laminin–laminin receptor axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shi X, Zhang TT, Hu WP, Ji QH (2017) Marital status and survival of patients with oral cavity squamous cell carcinoma: a population-based study. Oncotarget 8:28526–28543. https://doi.org/10.2174/1874210601206010126

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kelesidis I, Kelesidis T, Mantzoros CS (2006) Adiponectin and cancer: a systematic review. Br J Cancer 94:1221–1225. https://doi.org/10.1038/sj.bjc.6603051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scherer PE, Williams S, Fogliano M et al (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746–26749. https://doi.org/10.1074/jbc.270.45.26746

    Article  CAS  PubMed  Google Scholar 

  4. Maeda K, Okubo K, Shimomura I et al (1996) cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 221:286–289. https://doi.org/10.1006/bbrc.1996.0587

    Article  CAS  PubMed  Google Scholar 

  5. Hu E, Liang P, Spiegelman BM (1996) AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem 271:10697–10703. https://doi.org/10.1074/jbc.271.18.10697

    Article  CAS  PubMed  Google Scholar 

  6. Arita Y, Kihara S, Ouchi N et al (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257:79–83. https://doi.org/10.1006/bbrc.1999.0255

    Article  CAS  PubMed  Google Scholar 

  7. Ouchi N, Walsh K (2007) Adiponectin as an anti-inflammatory factor. Clin Chim Acta 380:24–30. https://doi.org/10.1016/j.cca.2007.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takeuchi T, Adachi Y, Ohtsuki Y, Furihata M (2007) Adiponectin receptors, with special focus on the role of the third receptor, T-cadherin, in vascular disease. Med Mol Morphol 40:115–120. https://doi.org/10.1007/s00795-007-0364-9

    Article  CAS  PubMed  Google Scholar 

  9. Parida S, Siddharth S, Sharma D (2019) Adiponectin, obesity, and cancer: clash of the bigwigs in health and disease. Int J Mol Sci 20(10):2519. https://doi.org/10.3390/ijms20102519

    Article  PubMed Central  Google Scholar 

  10. Sugiyama M, Takahashi H, Hosono K et al (2009) Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int J Oncol 34:339–344

    CAS  PubMed  Google Scholar 

  11. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M (2019) Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism 92:121–135. https://doi.org/10.1016/j.metabol.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  12. Takeuchi T, Liang SB, Matsuyoshi N et al (2002) Loss of T-cadherin (CDH13, H-cadherin) expression in cutaneous squamous cell carcinoma. Lab Invest 82:1023–1029

    Article  CAS  PubMed  Google Scholar 

  13. Jin Z, Cheng Y, Olaru A et al (2008) Promoter hypermethylation of CDH13 is a common, early event in human esophageal adenocarcinogenesis and correlates with clinical risk factors. Int J Cancer 123:2331–2336. https://doi.org/10.1002/ijc.23804

    Article  CAS  PubMed  Google Scholar 

  14. Schäffler A, Buechler C (2012) CTRP family: linking immunity to metabolism. Trends Endocrinol Metab 23:194–204. https://doi.org/10.1016/j.tem.2011.12.003

    Article  CAS  PubMed  Google Scholar 

  15. Seldin MM, Tan SY, Wong GW (2014) Metabolic function of the CTRP family of hormones. Rev Endocr Metab Disord 15:111–123. https://doi.org/10.1007/s11154-013-9255-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shapiro L, Scherer PE (1998) The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr Biol 8:335–338

    Article  CAS  PubMed  Google Scholar 

  17. Murayama MA, Kakuta S, Inoue A et al (2015) CTRP6 is an endogenous complement regulator that can effectively treat induced arthritis. Nat Commun 6:8483. https://doi.org/10.1038/ncomms9483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lei H, Wu D, Wang JY et al (2015) C1q/tumor necrosis factor-related protein-6 attenuates post-infarct cardiac fibrosis by targeting RhoA/MRTF-A pathway and inhibiting myofibroblast differentiation. Basic Res Cardiol 110:35. https://doi.org/10.1007/s00395-015-0492-7

    Article  CAS  PubMed  Google Scholar 

  19. Fan RH, Zhu XM, Sun YW et al (2016) CTRP6 inhibits fibrogenesis in TGF-β1-stimulated human dermal fibroblasts. Biochem Biophys Res Commun 475:356–360. https://doi.org/10.1016/j.bbrc.2016.05.013

    Article  CAS  PubMed  Google Scholar 

  20. Wang C, Gao C, Zhuang JL et al (2012) A combined approach identifies three mRNAs that are down-regulated by microRNA-29b and promote invasion ability in the breast cancer cell line MCF-7. J Cancer Res Clin Oncol 138:2127–2136. https://doi.org/10.1007/s00432-012-1288-x

    Article  CAS  PubMed  Google Scholar 

  21. Wang L, Liu Z, Duan L et al (2015) C1q tumor necrosis factor-related protein 6 (CTRP6) inhibits the proliferation and migration of ovarian cancer cells. Chin J Cell Mol Immunol 31:1664–1668

    CAS  Google Scholar 

  22. Pesapane A, Ragno P, Selleri C, Montuori N (2017) Recent advances in the function of the 67 kDa laminin receptor and its targeting for personalized therapy in cancer. Curr Pharm Des. https://doi.org/10.2174/1381612823666170710125332

    Article  PubMed  Google Scholar 

  23. Takeuchi T, Adachi Y, Nagayama T (2011) Expression of a secretory protein CTRP6, a C1qTNF family member, in hepatocellular carcinoma. Anal Cell Pathol 34:113–121. https://doi.org/10.3233/acp-2011-009

    Article  CAS  Google Scholar 

  24. Kawashima K, Saigo C, Kito Y et al (2019) CD151 confers metastatic potential to clear cell sarcoma of the soft tissue in animal model. Oncol Lett 17:4811–4818. https://doi.org/10.3892/ol.2019.10164

    Article  PubMed  PubMed Central  Google Scholar 

  25. Takeuchi T, Misaki A, Liang SB et al (2000) Expression of T-cadherin (CDH13, H-Cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. J Neurochem 74:1489–1497

    Article  CAS  PubMed  Google Scholar 

  26. Takeuchi T, Adachi Y, Sonobe H et al (2006) A ubiquitin ligase, skeletrophin, is a negative regulator of melanoma invasion. Oncogene 25:7059–7069. https://doi.org/10.1038/sj.onc.1209688

    Article  CAS  PubMed  Google Scholar 

  27. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Article  CAS  PubMed  Google Scholar 

  28. Takeuchi T, Adachi Y, Nagayama T et al (2012) A WWOX-binding molecule, transmembrane protein 207, is related to the invasiveness of gastric signet-ring cell carcinoma. Carcinogenesis 33:548–554. https://doi.org/10.1093/carcin/bgs001

    Article  CAS  PubMed  Google Scholar 

  29. Martignone S, Ménard S, Bufalino R et al (1993) Prognostic significance of the 67-kilodalton laminin receptor expression in human breast carcinomas. J Natl Cancer Inst 85:398–402

    Article  CAS  PubMed  Google Scholar 

  30. Pellegrini R, Martignone S, Tagliabue E et al (1995) Prognostic significance of laminin production in relation with its receptor expression in human breast carcinomas. Breast Cancer Res Treat 35:195–199

    Article  CAS  PubMed  Google Scholar 

  31. Satoh K, Narumi K, Isemura M et al (1992) Increased expression of the 67 kDa-laminin receptor gene in human small cell lung cancer. Biochem Biophys Res Commun 182:746–752

    Article  CAS  PubMed  Google Scholar 

  32. D’Errico A, Garbisa S, Liotta LA et al (1991) Augmentation of type IV collagenase, laminin receptor, and ki67 proliferation antigen associated with human colon, gastric, and breast carcinoma progression. Mod Pathol 4:239–246

    PubMed  Google Scholar 

  33. Mafune K, Ravikumar TS, Wong JM et al (1990) Expression of a Mr 32,000 laminin-binding protein messenger RNA in human colon carcinoma correlates with disease progression. Cancer Res 50:3888–3891

    CAS  PubMed  Google Scholar 

  34. Campo E, Monteagudo C, Castronovo V et al (1992) Detection of laminin receptor mRNA in human cancer cell lines and colorectal tissues by in situ hybridization. Am J Pathol 141:1073–1083

    CAS  PubMed  PubMed Central  Google Scholar 

  35. DiGiacomo V, Meruelo D (2016) Looking into laminin receptor: critical discussion regarding the non-integrin 37/67-kDa laminin receptor/RPSA protein. Biol Rev Camb Philos Soc 91:288–310. https://doi.org/10.1111/brv.12170

    Article  PubMed  Google Scholar 

  36. Digiacomo V, Gando IA, Venticinque L et al (2015) The transition of the 37-Kda laminin receptor (Rpsa) to higher molecular weight species: sumoylation or artifact? Cell Mol Biol Lett 20:571–585. https://doi.org/10.1515/cmble-2015-0031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rao CN, Castronovo V, Schmitt MC et al (1989) Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry 28:7476–7486

    Article  CAS  PubMed  Google Scholar 

  38. Wewer UM, Liotta LA, Jaye M et al (1986) Altered levels of laminin receptor mRNA in various human carcinoma cells that have different abilities to bind laminin. Proc Natl Acad Sci USA 83:7137–7141

    Article  CAS  PubMed  Google Scholar 

  39. Glogowska A, Kunanuvat U, Stetefeld J et al (2013) C1q-tumour necrosis factor-related protein 8 (CTRP8) is a novel interaction partner of relaxin receptor RXFP1 in human brain cancer cells. J Pathol 231:466–479. https://doi.org/10.1002/path.4257

    Article  CAS  PubMed  Google Scholar 

  40. Klonisch T, Glogowska A, Thanasupawat T et al (2017) Structural commonality of C1q TNF-related proteins and their potential to activate relaxin/insulin-like family peptide receptor 1 signalling pathways in cancer cells. Br J Pharmacol 174:1025–1033. https://doi.org/10.1111/bph.13559

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Ministry of Education of Japan (KAKEN 15K08361, 15K19051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamotsu Takeuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hano, K., Hatano, K., Saigo, C. et al. An adiponectin paralog protein, CTRP6 decreased the proliferation and invasion activity of oral squamous cell carcinoma cells: possible interaction with laminin receptor pathway. Mol Biol Rep 46, 4967–4973 (2019). https://doi.org/10.1007/s11033-019-04947-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04947-9

Keywords

Navigation