Skip to main content

Advertisement

Log in

Detecting population structure of Paleosuchus trigonatus (Alligatoridae: Caimaninae) through microsatellites markers developed by next generation sequencing

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We isolated and characterized 10 new microsatellites loci for Paleosuchus trigonatus using ION TORRENT Sequencing Technology. We tested the transferability of these loci to three related species of the subfamily Caimaninae, and used these bi-parental markers to test population structure and genetic diversity of two populations of P. trigonatus impacted by hydroelectric dam construction on the Madeira (N = 16) and Xingu (N = 16) rivers. We also investigated the transferability of these markers to three related species: Paleosuchus palpebrosus (N = 5), Caiman crocodilus (N = 6) and Melanosuchus niger (N = 6). The genetic diversity of P. trigonatus was low in both the Madeira (He: 0.535 ± 0.148) and Xingu (He: 0.381 ± 0.222) populations, but the loci were sufficiently polymorphic to be used in system of mating and kinship studies in P. trigonatus. DAPC analysis with our set of microsatellites loci was able to separate the four species of Caimaninae studied and to detect a shallow genetic structure between Madeira and Xingu populations of P. trigonatus. AMOVA and STRUCTURE analyses using locprior model corroborate this shallow genetic structure. These novel molecular markers will be also useful in conservation genetics and phylogeographic studies of P. trigonatus, since they improve our ability to monitor the putative effects of dams on the loss of genetic diversity and allow us to investigate population dynamics and microevolutionary processes that occurred in the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Estoup A, Presa P, Krieg F et al (1993) (CT)n and (GT)n microsatellites: A new class of genetic markers for salmo trutta L.(brown trout). Heredity (Edinb) 71:488–496. https://doi.org/10.1038/hdy.1993.167

    Article  CAS  Google Scholar 

  2. Schlötterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371. https://doi.org/10.1007/s004120000089

    Article  PubMed  Google Scholar 

  3. Castoe TA, Poole AW, Gu W et al (2010) Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence. Mol Ecol Resour 10:341–347. https://doi.org/10.1111/j.1755-0998.2009.02750.x

    Article  CAS  PubMed  Google Scholar 

  4. Abdelkrim J, Robertson BC, Stanton JAL, Gemmell NJ (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192. https://doi.org/10.2144/000113084

    Article  CAS  PubMed  Google Scholar 

  5. Gardner MG, Fitch AJ, Bertozzi T, Lowe AJ (2011) Rise of the machines—recommendations for ecologists when using next generation sequencing for microsatellite development. Mol Ecol Resour 11:1093–1101. https://doi.org/10.1111/j.1755-0998.2011.03037.x

    Article  PubMed  Google Scholar 

  6. Shedlock AM, Botka CW, Zhao S et al (2007) Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome. Proc Natl Acad Sci 104:2767–2772. https://doi.org/10.1073/pnas.0606204104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adams RH, Blackmon H, Reyes-Velasco J et al (2016) Microsatellite landscape evolutionary dynamics across 450 million years of vertebrate genome evolution. Genome 59:295–310. https://doi.org/10.1139/gen-2015-0124

    Article  CAS  PubMed  Google Scholar 

  8. Miles LG, Lance SL, Isberg SR et al (2009) Cross-species amplification of microsatellites in crocodilians: assessment and applications for the future. Conserv Genet 10:935–954. https://doi.org/10.1007/s10592-008-9601-6

    Article  CAS  Google Scholar 

  9. Muniz FL, Da Silveira R, Campos Z et al (2011) Multiple paternity in the Black Caiman (Melanosuchus niger) population in the Anavilhanas National Park, Brazilian Amazonia. Amphibia-Reptilia. https://doi.org/10.1163/017353711X587741

    Article  Google Scholar 

  10. Oliveira DP, Marioni B, Farias IP, Hrbek T (2014) Genetic evidence for polygamy as a mating strategy in Caiman crocodilus. J Hered 105:485–492. https://doi.org/10.1093/jhered/esu020

    Article  PubMed  Google Scholar 

  11. Milián-García Y, Ramos-Targarona R, Pérez-Fleitas E et al (2015) Genetic evidence of hybridization between the critically endangered Cuban crocodile and the American crocodile: Implications for population history and in situ/ex situ conservation. Heredity 114:272–280. https://doi.org/10.1038/hdy.2014.96

    Article  CAS  PubMed  Google Scholar 

  12. Cunningham SW, Shirley MH, Hekkala ER (2016) Fine scale patterns of genetic partitioning in the rediscovered African crocodile, Crocodylus suchus (Saint-Hilaire 1807). PeerJ 4:e1901. https://peerj.com/articles/1901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pacheco-Sierra G, Gompert Z, Domínguez-Laso J, Vázquez-Domínguez E (2016) Genetic and morphological evidence of a geographically widespread hybrid zone between two crocodile species, Crocodylus acutus and Crocodylus moreletii. Mol Ecol 25:3484–3498. https://doi.org/10.1111/mec.13694

    Article  PubMed  Google Scholar 

  14. Shirley MH, Austin JD (2017) Did Late Pleistocene climate change result in parallel genetic structure and demographic bottlenecks in sympatric Central African crocodiles, Mecistops and Osteolaemus? Mol Ecol 26:6463–6477. https://doi.org/10.1111/mec.14378

    Article  PubMed  Google Scholar 

  15. Eaton MJ, Martin A, Thorbjarnarson J, Amato G (2009) Species-level diversification of African dwarf crocodiles (Genus Osteolaemus): a geographic and phylogenetic perspective. Mol Phylogenet Evol 50:496–506. https://doi.org/10.1016/j.ympev.2008.11.009

    Article  CAS  PubMed  Google Scholar 

  16. Muniz FL, Campos Z, Hernández Rangel SM et al (2018) Delimitation of evolutionary units in Cuvier’s dwarf caiman, Paleosuchus palpebrosus (Cuvier, 1807): insights from conservation of a broadly distributed species. Conserv Genet 19:599–610. https://doi.org/10.1007/s10592-017-1035-6

    Article  Google Scholar 

  17. Magnusson WE (1989) Paleosuchus. In: Crocodiles. Their ecology, management and conservation. IUCN, Gland, pp 168–175

    Google Scholar 

  18. Magnusson WE, Campos Z (2010) Schneider’s Smooth-fronted Caiman Paleosuchus trigonatus. In: Manolis SC, Stevenson C (eds) Crocodiles. Status survey and conservation action plan, third. Crocodile Specialist Group, Darwin, pp 43–45

    Google Scholar 

  19. Magnusson WE, Lima AP (1991) The ecology of a cryptic predator, Paleosuchus tigonatus, in a Tropical Rainforest. J Herpetol 25:41–48. https://doi.org/10.2307/1564793

    Article  Google Scholar 

  20. Bittencourt PS, Campos Z, Muniz FL, Marioni B, Souza BC, Da Silveira R, de Thoisy B, Hrbek T, Farias IP (2019) Evidence of cryptic lineages within a small South American crocodilian: the Schneider’s dwarf caiman Paleosuchus trigonatus (Alligatoridae: Caimaninae). PeerJ 7:e6580. https://doi.org/10.7717/peerj.6580

  21. Hrbek T, Martínez JG, Hernandez-Rangel SM, Assunção EN, Bertuol F, Canton R, Astolfi-Filho S, Farias IP (2019) Optimizing Next Generation Sequencing for biodiversity studies on the IONTORRENT PGM: an in silico and in vitro analysis. PeerJ 7:accepted. https://doi.org/10.7717/peerj.xxxx

  22. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Am 19:11–15

    Google Scholar 

  23. Coyne KJ, Burkholder JM, Robert A et al (2004) Modified serial analysis of gene expression method for construction of gene expression profiles of microbial eukaryotic species modified serial analysis of gene expression method for construction of gene expression profiles of microbial eukaryotic species. Appl Environ Microbiol 70:5298–5304. https://doi.org/10.1128/AEM.70.9.5298-5304.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meglécz E, Pech N, Gilles A et al (2014) QDD version 3.1: A user-friendly computer program for microsatellite selection and primer design revisited: experimental validation of variables determining genotyping success rate. Mol Ecol Resour 14:1302–1313. https://doi.org/10.1111/1755-0998.12271

    Article  CAS  PubMed  Google Scholar 

  25. Steffens DL, Sutter SL, Roemer SC (1993) An alternate universal forward primer for improved automated DNA sequencing of M13. Biotechniques 15:580,582

    PubMed  Google Scholar 

  26. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. https://doi.org/10.1038/72708

    Article  CAS  PubMed  Google Scholar 

  27. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  28. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106. https://doi.org/10.1111/j.1365-294X.2007.03089.x

    Article  PubMed  Google Scholar 

  29. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

    Article  PubMed  Google Scholar 

  30. Peakall R, Smouse PE (2012) GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. https://doi.org/10.1186/1471-2156-11-94

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jombart T (2008) Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. https://doi.org/10.1093/bioinformatics/btn129

    Article  CAS  PubMed  Google Scholar 

  33. Jombart T, Collins C (2015) A tutorial for discriminant analysis of principal components (DAPC) using adegenet 2.0.0.1–43

  34. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590. https://doi.org/10.3390/ijms15010277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

    Article  PubMed  Google Scholar 

  36. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358. https://doi.org/10.2307/2408641

    Article  CAS  PubMed  Google Scholar 

  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1111/j.1471-8286.2007.01758.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Earl DA, VonHoldt BM (2012) Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361. https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  39. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  40. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. https://doi.org/10.1093/bioinformatics/btm233

    Article  CAS  PubMed  Google Scholar 

  41. Rosenberg NA (2004) distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. https://doi.org/10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  42. Barnes TC, Izzo C, Bertozzi T et al (2014) Development of 15 microsatellite loci from mulloway, Argyrosomus japonicus (Pisces: Sciaenidae) using next generation sequencing and an assessment of their cross amplification in other sciaenids. Conserv Genet Resour 6:345–348. https://doi.org/10.1007/s12686-013-0090-7

    Article  Google Scholar 

  43. Eo SH, Lee WS, Lee BJ et al (2016) Microsatellite markers for the Ussuri white-toothed shrew (Soricidae: Crocidura lasiura) developed by Ion Torrent sequencing and their application to the shrew populations in disturbed forests. Genes Genomics 38:351–357. https://doi.org/10.1007/s13258-015-0375-1

    Article  Google Scholar 

  44. Gutiérrez EG, Hernández Canchola G, León Paniagua LS et al (2017) Isolation and characterization of microsatellite markers for Sturnira parvidens and cross-species amplification in Sturnira species. PeerJ 5:e3367. https://doi.org/10.7717/peerj.3367

    Article  PubMed  PubMed Central  Google Scholar 

  45. Maduna SN, Rossouw C, da Silva C et al (2017) Species identification and comparative population genetics of four coastal houndsharks based on novel NGS-mined microsatellites. Ecol Evol 7:1462–1486. https://doi.org/10.1002/ece3.2770

    Article  PubMed  PubMed Central  Google Scholar 

  46. Song W, Zhu D, Lv Y, Wang W (2017) Development and characterization of 29 polymorphic microsatellite loci of Megalobrama pellegrini by next-generation sequencing technology and cross-species amplification in related species. PeerJ Preprints 4:e2490v1. https://doi.org/10.7287/peerj.preprints.2490V1

    Article  CAS  Google Scholar 

  47. Vianna JA, Noll D, Mura-Jornet I et al (2017) Comparative genome-wide polymorphic microsatellite markers in Antarctic penguins through next generation sequencing. Genet Mol Biol 40:676–687. https://doi.org/10.1590/1678-4685-gmb-2016-0224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Glenn TC, Dessauer HC, Braun MJ (1998) Characterization of microsatellite DNA loci in American Alligators. Copeia 1998:591–601

    Article  Google Scholar 

  49. Dever JA, Densmore LD (2001) Microsatellites in Morelet’s crocodile (Crocodylus moreletii) and their utility in addressing crocodilian population genetics questions. J Herpetol 35:541–544. https://doi.org/10.2307/1565981

    Article  Google Scholar 

  50. Fitzsimmons NN, Tanksley S, Forstner MRJ et al (2001) Microsatellite markers for Crocodylus: new genetic tools for population genetics, mating system studies and forensics. In: Grigg GC, Seebacher F, Franklin CE (eds) Crocodilian biology and evolution. Surrey Beatty & Sons, Chipping Norton; pp 51–57

    Google Scholar 

  51. Zucoloto RB, Verdade LM, Coutinho LL (2002) Microsatellite DNA library for Caiman latirostris. J Exp Zool 294:346–351. https://doi.org/10.1002/jez.10190

    Article  CAS  PubMed  Google Scholar 

  52. Godshalk R (2006) Phylogeography and conservation genetics of the yacare caiman (Caiman yacare) of South America. University of Florida, Gainesville

    Google Scholar 

  53. Oliveira DP, Farias IP, Marioni B et al (2010) Microsatellite markers for mating system and population analyses of the spectacled caiman Caiman crocodilus (Linnaeus 1758). Conserv Genet Resour 2:181–184. https://doi.org/10.1007/s12686-010-9221-6

    Article  Google Scholar 

  54. Zucoloto RB, Villela PMS, Verdade LM, Coutinho LL (2006) Cross-species microsatellite amplification in South American Caimans (Caiman spp and Paleosuchus palpebrosus). Genet Mol Biol 29:75–78. https://doi.org/10.1590/S1415-47572006000100015

    Article  CAS  Google Scholar 

  55. Hekkala ER, Amato G, DeSalle R, Blum MJ (2010) Molecular assessment of population differentiation and individual assignment potential of Nile crocodile (Crocodylus niloticus) populations. Conserv Genet 11:1435–1443. https://doi.org/10.1007/s10592-009-9970-5

    Article  Google Scholar 

  56. Ojeda GN, Amavet PS, Rueda EC et al (2017) Mating system of Caiman yacare (Reptilia: Alligatoridae) described from microsatellite genotypes. J Hered 108:135–141. https://doi.org/10.1093/jhered/esw080

    Article  PubMed  Google Scholar 

  57. Lapbenjakul S, Thapana W, Twilprawat P et al (2017) High genetic diversity and demographic history of captive Siamese and Saltwater crocodiles suggest the first step toward the establishment of a breeding and reintroduction program in Thailand. PLoS ONE 12:e0184526. https://doi.org/10.1371/journal.pone.0184526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Magnusson WE (1992) Paleosuchus trigonatus. Cat Am Amphib Rept 555.1–555.3

  59. Campos Z, Muniz F, Magnusson WE (2017) Extension of the geographical distribution of Schneider’s Dwarf Caiman, Paleosuchus trigonatus (Schneider, 1801) (Crocodylia: Alligatoridae), in the Amazon-Cerrado transition. Brazil Check List 13:91–94. https://doi.org/10.15560/13.4.91

    Article  Google Scholar 

  60. Amavet P, Rosso E, Markariani R, Piña CI (2008) Microsatellite DNA markers applied to detection of multiple paternity in Caiman latirostris in Santa Fe, Argentina. J Exp Zool Part A Ecol Genet Physiol 309:637–642. https://doi.org/10.1002/jez.496

    Article  CAS  Google Scholar 

  61. Davis LM, Glenn TC, Elsey RM et al (2001) Multiple paternity and mating patterns in the American alligator, Alligator mississippiensis. Mol Ecol 10:1011–1024. https://doi.org/10.1046/j.1365-294X.2001.01241.x

    Article  CAS  PubMed  Google Scholar 

  62. Lance SL, Tuberville TD, Dueck L et al (2009) Multiyear multiple paternity and mate fidelity in the American alligator, Alligator mississippiensis. Mol Ecol 18:4508–4520. https://doi.org/10.1111/j.1365-294X.2009.04373.x

    Article  CAS  PubMed  Google Scholar 

  63. Hu Y, Wu XB (2010) Multiple paternity in Chinese alligator (Alligator sinensis) clutches during a reproductive season at Xuanzhou Nature Reserve. Amphib Reptil 31:419–424. https://doi.org/10.1163/156853810791769446

    Article  Google Scholar 

  64. Wang H, Yan P, Zhang S et al (2017) Multiple paternity: a compensation mechanism of the Chinese alligator for inbreeding. Anim Reprod Sci 187:124–132. https://doi.org/10.1016/j.anireprosci.2017.10.016

    Article  CAS  PubMed  Google Scholar 

  65. Dever JA, Strauss RE, Rainwater TR et al (2002) Genetic diversity, population subdivision, and gene flow in Morelet’s Crocodile (Crocodylus moreletii) from Belize, Central America. Copeia 2002:1078–1091. https://doi.org/10.1643/0045-8511(2002)002%5B1078:GDPSAG%5D2.0.CO;2

    Article  Google Scholar 

  66. de Thoisy B, Hrbek T, Farias IP et al (2006) Genetic structure, population dynamics, and conservation of Black caiman (Melanosuchus niger). Biol Conserv 133:474–482. https://doi.org/10.1016/j.biocon.2006.07.009

    Article  Google Scholar 

  67. Campos JC, Mobaraki A, Abtin E et al (2018) Preliminary assessment of genetic diversity and population connectivity of the Mugger Crocodile in Iran. Amphibia-Reptilia 39:126–131. https://doi.org/10.1163/15685381-16000173

    Article  Google Scholar 

  68. Grigg G, Kirshner D (2015) Biology and evolution of crocodylians, 1st edn. Comstock Publishing Associates, Ithaca, 672 p

    Book  Google Scholar 

  69. Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics, 2nd edn. Cambridge University Press, Cambridge, 642 p

    Book  Google Scholar 

Download references

Acknowledgements

This study was financed by the following Grants: CNPq/CT-Amazon Project no. 575603/2008-9 awarded to IPF, CNPq Project no. 482662/2013-1 to TH, and CNPq Project no. 470383/2007-0 and 479179/2014 to ZC. FM and PSB were supported by Fundação de Amparo à Pesquisa do Estado do Amazonas (FAPEAM), doctoral and master fellowship respectively. SMHR was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). AMX was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) masters fellowship, financial code 001, and a research fellowship from FAPEAM. We are also grateful for the additional financial and logistical support from Embrapa Pantanal (Macroprogram 3), Instituto Nacional de Pesquisas da Amazônia (INPA), Fundect, Norte Energia, Tractebel, O Boticário Foundation, Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) and Santo Antônio Energia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. L. Muniz.

Ethics declarations

Conflict of interest

The authors declare that they have no financial or non-financial conflict of interest.

Ethical approval

This study was approved by Embrapa ethics committee under the Permit no. 009/2016, Mato Grosso do Sul, Brazil. All tissue samples of the caimans were colected under the license no. 13048-1, granted by the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA), and deposited in the CTGA (Coleção de Tecidos de Genética Animal) tissue collection at Universidade Federal do Amazonas (UFAM), Amazonas, Brazil.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muniz, F.L., Ximenes, A.M., Bittencourt, P.S. et al. Detecting population structure of Paleosuchus trigonatus (Alligatoridae: Caimaninae) through microsatellites markers developed by next generation sequencing. Mol Biol Rep 46, 2473–2484 (2019). https://doi.org/10.1007/s11033-019-04709-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-019-04709-7

Keywords

Navigation