Skip to main content
Log in

Nimbolide attenuate the lipid accumulation, oxidative stress and antioxidant in primary hepatocytes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Nimbolide is a bioactive compound found in Azadirachta indica. This work was devised to investigate the potential effects of nimbolide on intracellular lipid deposition and its associated redox modulation in primary hepatocytes (Heps). Lipid accumulation was induced in Heps by supplementing 1 mM oleic acid for 24 h which was marked by significant accumulation of lipids. The results demonstrated that nimbolide can decrease intracellular cholesterol, free fatty acids and triglycerides. Nimbolide may also improve hepatocytes function through its antioxidant effects by inhibiting oxidative DNA damage and lipid peroxidation by curtailing the reactive oxygen species levels. Further it also restore the mitochondrial potential, improving the endogenous antioxidant levels such as GSH and antioxidant enzyme activities. Nimbolide increased (P < 0.05) liver X receptor-α (LXRα), peroxisome proliferator-activated receptor-γ (PPARγ) and sterol regulatory element-binding protein-1c (SREBP1c) gene expression in Heps. The biological significance of nimbolide may involve hypolipidemic effect, lipid peroxidation inhibition, DNA damage inhibition, ROS inhibition, restoring mitochondrial function, increases in GSH and SOD & CAT activities, and direct regulation of LXRα, PPARγ and SREBP1c gene expression. Nimbolide may be used as effective lipid lowering compound and lipid deposition-induced Heps changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wesolowski SR, Kasmi KC, Jonscher KR, Friedman JE (2017) Developmental origins of NAFLD: a womb with a clue. Nat Rev Gastroenterol Hepatol 14:81–96

    Article  CAS  PubMed  Google Scholar 

  2. Baiceanu A, Mesdom P, Lagouge M, Foufelle F (2016) Endoplasmic reticulum proteostasis in hepatic steatosis. Nat Rev Endocrinol 12:710–722

    Article  CAS  PubMed  Google Scholar 

  3. Simon TG, Corey KE, Chung RT, Giugliano R (2016) Cardiovascular risk reduction in patients with nonalcoholic fatty liver disease: The potential role of ezetimibe. Dig Dis Sci 61:3425–3435

    Article  CAS  PubMed  Google Scholar 

  4. Nascimbeni F, Dalla Salda A, Carubbi F (2016) Energy balance, glucose and lipid metabolism, cardiovascular risk and liver disease burden in adult patients with type 1 Gaucher disease. Blood Cells Mol Dis. https://doi.org/10.1016/j.bcmd.2016.10.012

    PubMed  Google Scholar 

  5. Nagashima S, Yagyu H, Tozawa R, Tazoe F, Takahashi M, Kitamine T, Yamamuro D, Sakai K, Sekiya M, Okazaki H, Osuga J, Honda A, Ishibashi S (2015) Plasma cholesterol-lowering and transient liver dysfunction in mice lacking squalene synthase in the liver. J Lipid Res 56:998–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Baselga-Escudero L, Bladé C, Ribas-Latre A, Casanova E, Salvadó MJ, Arola L, Arola-Arnal A (2012) Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol Nutr Food Res 56:1636–1646

    Article  CAS  PubMed  Google Scholar 

  7. Liu RH (2013) Health-promoting components of fruits and vegetables in the diet. Adv Nutr 4:384S–392S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo X, Li C, Luo P, Lin X, Ma H, Seeram NP, Song C, Xu J, Gu Q (2016) Pterosin sesquiterpenoids from Pteris creticaas hypolipidemic agents via activating liver X receptors. J Nat Prod 79:3014–3021

    Article  CAS  PubMed  Google Scholar 

  9. Wang T, Ruan J, Li X, Chao L, Shi P, Han L, Zhang Y, Wang T (2016) Bioactive cyclolanstane-type saponins from the stems of Astragalus membranaceus(Fisch.) Bge. var. mongholicus (Bge.) Hsiao. J Nat Med 70:198–206

    Article  CAS  PubMed  Google Scholar 

  10. Iqbal D, Khan MS, Khan MS, Ahmad S, Hussain MS, Ali (2015) Bioactivity guided fractionation and hypolipidemic property of a novel HMG-CoA reductase inhibitor from Ficus virens Ait. Lipids Health Dis 14:15. https://doi.org/10.1186/s12944-015-0013-6

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee SJ, Jia Y (2015) The effect of bioactive compounds in tea on lipid metabolism and obesity through regulation of peroxisome proliferator-activated receptors. Curr Opin Lipidol 26:3–9

    Article  CAS  PubMed  Google Scholar 

  12. Satyanarayana K, Sravanthi K, Shaker IA, Ponnulakshmi R (2015) Molecular approach to identify antidiabetic potential of Azadirachta indica. J Ayurveda Integr Med 6:165–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gupta S, Kataria M, Gupta PK, Murganandan S, Yashroy RC (2004) Protective role of extracts of neem seeds in diabetes caused by streptozotocin in rats. J Ethnopharmacol 90:185–189

    Article  CAS  PubMed  Google Scholar 

  14. Zanuncio JC, Mourão SA, Martínez LC, Wilcken CF, Ramalho FS, Plata-Rueda A, Soares MA, Serrão JE (2016) Toxic effects of the neem oil (Azadirachta indica) formulation on the stink bug predator, Podisus nigrispinus(Heteroptera: Pentatomidae). Sci Rep 6:30261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abdel Moneim AE, Othman MS, Aref AM (2014) Azadirachta indicaattenuates cisplatin-induced nephrotoxicity and oxidative stress. Biomed Res Int 2014:647131

    Article  PubMed  PubMed Central  Google Scholar 

  16. Baligar NS, Aladakatti RH, Ahmed M, Hiremath MB (2014) Hepatoprotective activity of the neem-based constituent azadirachtin-A in carbon tetrachloride intoxicated Wistar rats. Can J Physiol Pharmacol 92:267–277

    Article  CAS  PubMed  Google Scholar 

  17. Jang SW, Liu X, Chan CB, France SA, Sayeed I, Tang W, Lin X, Xiao G, Andero R, Chang Q, Ressler KJ, Ye K (2010) Deoxygedunin, a natural product with potent neurotrophic activity in mice. PLoS ONE 5:e11528

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nagini S (2014) Neem limonoids as anticancer agents: Modulation of cancer hallmarks and oncogenic signaling. Enzymes 36:131–147

    Article  CAS  PubMed  Google Scholar 

  19. Manikandan P, Anandan R, Nagini S (2009) Evaluation of Azadirachta indicaleaf fractions for in vitro antioxidant potential and protective effects against H2O2-induced oxidative damage to pBR322 DNA and red blood cells. J Agric Food Chem 57:6990–6996

    Article  CAS  PubMed  Google Scholar 

  20. Kowshik J, Mishra R, Sophia J, Rautray S, Anbarasu K, Reddy GD, Dixit M, Mahalingam S, Nagini S (2017). Nimbolide upregulates RECK by targeting miR-21 and HIF-1a in cell lines and in a hamster oral carcinogenesis model. Sci Rep 7(1): 2045

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chien SY, Hsu CH, Lin CC, Chuang YC, Lo YS, Hsi YT, Hsieh MJ, Chen MK (2017) Nimbolide induces apoptosis in human nasopharyngeal cancer cells. Environ Toxicol 32:2085–2092

    Article  CAS  PubMed  Google Scholar 

  22. Seo JY, Lee C, Hwang SW, Chun J, Im JP, Kim JS (2016) Nimbolide inhibits nuclear factor-кb pathway in intestinal epithelial cells and macrophages and alleviates experimental colitis in mice. Phytother Res 30:1605–1614

    Article  CAS  PubMed  Google Scholar 

  23. Thirunavukkarasu C, Wang LF, Harvey SA, Watkins SC, Chaillet JR, Prelich J, Starzl TE, Gandhi CR (2008) Augmenter of liver regeneration: an important intracellular survival factor for hepatocytes. J Hepatol 48:578–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Patel TP, Rawal K, Soni S, Gupta S (2016) Swertiamarin ameliorates oleic acid induced lipid accumulation and oxidative stress by attenuating gluconeogenesis and lipogenesis in hepatic steatosis. Biomed Pharmacother 83:785–791

    Article  CAS  PubMed  Google Scholar 

  25. Franey RJ, Amador E (1968) Serum cholesterol measurement based on ethanol extraction and ferric chloride-sulfuric acid. Clin Chim Acta 21:255–263

    Article  CAS  PubMed  Google Scholar 

  26. Rice EW (1970) Triglycerides in serum. In: Standard methods of clinical chemistry, vol 6. Academic Press, New York, pp 213–222

    Google Scholar 

  27. Hron WT, Menahan LA (1981) A sensitive method for the determination of free fatty acids in plasma. J Lipid Res 22:377–381

    CAS  PubMed  Google Scholar 

  28. Lowry OH, Rosebrough NJ, Farr AL, Randall RL (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  29. Hogberg J, Larson RE, Kristoferson A, Orrenius S (1974) NADPH dependent reductase solubilised from microsomes by peroxidation and its activity. Biochem Biophys Res Commun 56:836–842

    Article  CAS  PubMed  Google Scholar 

  30. Ellman GL (1959) Tissue sulphydryl groups. Archiv Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  31. Misra HP, Fridovich I (1972) The role of superoxide anion in the auto oxidation of epinephrine and a simple assay of superoxide dismutase. J Biol Chem 247:3170–3175

    CAS  PubMed  Google Scholar 

  32. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  CAS  PubMed  Google Scholar 

  33. Suyavaran A, Ramamurthy C, Mareeswaran R, Shanthi YV, Selvakumar J, Mangalaraj S, Kumar MS, Ramanathan CR, Thirunavukkarasu C (2015) Synthesis and biological evaluation of isoindoloisoquinolinone, pyroloisoquinolinone and benzoquinazolinone derivatives as poly(ADP-ribose) polymerase-1 inhibitors. Bioorg Med Chem 23:488–498

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh YH, Lee CH, Chen HY, Hsieh SC, Lin CL, Tsai JP (2015) Induction of cell cycle arrest, DNA damage, and apoptosis by nimbolide in human renal cell carcinoma cells. Tumour Biol 36:7539–7547

    Article  CAS  PubMed  Google Scholar 

  35. Elumalai P, Arunakaran J (2014) Review on molecular and chemopreventive potential of nimbolide in cancer. Genomics Inform 12:156–164

    Article  PubMed  PubMed Central  Google Scholar 

  36. Nascimbeni F, Loria P, Ratziu V (2014) Non-alcoholic fatty liver disease: diagnosis and investigation. Dig Dis 32:586–596

    Article  PubMed  Google Scholar 

  37. Yeh MM, Brunt EM (2007) Pathology of nonalcoholic fatty liver disease. Am J Clin Pathol 128:837–847

    Article  PubMed  Google Scholar 

  38. Lin H, Qiu S, Xie L, Liu C, Sun S (2017) Nimbolide suppresses non-small cell lung cancer cell invasion and migration via manipulation of DUSP4 expression and ERK1/2 signaling. Biomed Pharmacother 92:340–346

    Article  CAS  PubMed  Google Scholar 

  39. Du C, Shi Y, Ren Y, Wu H, Yao F, Wei J, Wu M, Hou Y, Duan H (2015) Anthocyanins inhibit high-glucose-induced cholesterol accumulation and inflammation by activating LXRa pathway in HK-2 cells. Drug Des Devel Ther 9:5099–5113

    PubMed  PubMed Central  Google Scholar 

  40. Huang F, Zhao S, Yu F, Yang Z, Ding G (2017) Protective effects and mechanism of meretrix meretrix oligopeptides against nonalcoholic fatty liver disease. Mar Drugs 15:E31

    Article  PubMed  Google Scholar 

  41. Victor VM, Apostolova N, Herance R, Hernandezmijares A, Rocha M (2009) Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondria-targeted antioxidants as potential therapy. Curr Med Chem 16:4654–4667

    Article  CAS  PubMed  Google Scholar 

  42. Lee SM, Moon J, Cho Y, Ji HC, Shin MJ (2013) Quercetin up-regulates expressions of peroxisome proliferator-activated receptor g, liver X receptor a, and atp binding cassette transporter a1 genes and increases cholesterol efflux in human macrophage cell line. Nutr Res 33:136–143

    Article  CAS  PubMed  Google Scholar 

  43. Govindarajan M, Vijayakumar P, Pushpangadan P (2005) Antioxidant approach to disease management and the role of ‘rasayana’ herbs of ayurveda. J Ethnopharmacol 99:165–178

    Article  CAS  PubMed  Google Scholar 

  44. Meher AP, Wadhwani N, Randhir K, Mehendale S, Wagh G, Joshi SR (2016) Placental DHA and mRNA levels of PPARg and LXRa and their relationship to birth weight. J Clin Lipidol 10:767–774

    Article  PubMed  Google Scholar 

  45. Janowski BA, Willy PJ, Devi TR, Falck JR, Mangelsdorf DJ (1996) An oxysterol signalling pathway mediated by the nuclear receptor LXRa. Nature 383:728–731

    Article  CAS  PubMed  Google Scholar 

  46. Viktorsson E, Gabrielsen M, Kumarachandran N, Sylte I, Rongved P, Åstrand OA, Kase ET (2017) Regulation of liver X receptor target genes by 22-functionalized oxysterols. Synthesis,in silico and in vitro evaluations. Steroids 118:119–127

    Article  CAS  PubMed  Google Scholar 

  47. Mutemberezi V, Guillemot-Legris O, Muccioli GG (2016) Oxysterols: From cholesterol metabolites to key mediators. Prog Lipid Res 64:152–169

    Article  CAS  PubMed  Google Scholar 

  48. Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I (2000) Regulation of mouse sterol regulatory element-binding protein-1g gene by oxysterol receptors, LXRa and LXRb. Genes Dev 14:2819–2830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li Y, Zhao X, Feng X, Liu X, Deng C, Hu CH (2016) Berberine alleviates olanzapine-induced adipogenesis via the AMPKa-SREBP pathway in 3T3-L1 Cells. Int J Mol Sci 17:E1865

    Article  PubMed  Google Scholar 

  50. Chawla A, Boisvert WA, Lee CH, Laffitte BA, Barak Y, Joseph SB, Liao D, Nagy L, Edwards PA, Curtiss LK, Evans RM, Tontonoz P (2001). A PPARg-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7:161–171

    Article  CAS  PubMed  Google Scholar 

  51. Venkateswaran A, Laffitte BA, Joseph SB, Mak PA, Wilpitz DC, Edwards PA, Tontonoz P (2000) Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXRa. Proc Natl Acad Sci USA 97:12097–12102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the International Scientific Partnership Program at King Saud University for funding this research work through ISPP # 0084.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghedeir M. Alshammari or Thirunavukkarasu Chinnasamy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 104 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alshammari, G.M., Balakrishnan, A. & Chinnasamy, T. Nimbolide attenuate the lipid accumulation, oxidative stress and antioxidant in primary hepatocytes. Mol Biol Rep 44, 463–474 (2017). https://doi.org/10.1007/s11033-017-4132-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-017-4132-1

Keywords

Navigation