Skip to main content
Log in

The role of epithelial tight junctions involved in pathogen infections

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Tight junctions (TJs) are sealing complexes between adjacent epithelial cells, functioning by controlling paracellular passage and maintaining cell polarity. These functions of TJs are primarily based on structural integrity as well as dynamic regulatory balance, indicating plasticity of TJ in response to external stimuli. An indispensable role of TJs involved in pathogen infection has been widely demonstrated since disruption of TJs leads to a distinct increase in paracellular permeability and polarity defects which facilitate viral or bacterial entry and spread. In addition to pathological changes in TJ integrity, TJ proteins such as occludin and claudins can either function as receptors for pathogen entry or interact with viral/bacterial effector molecules as an essential step for characterizing an infective stage. This suggests a more complicated role for TJ itself and especially specific TJ components. Thus, this review surveys the role of the epithelial TJs involved in various pathogen infections, and extends TJ targeted therapeutic and pharmacological application prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Farquhar MG, Palade GE (1963) Junctional complexes in various epithelia. J Cell Biol 17:375–412

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Schulzke JD, Gunzel D, John LJ, Fromm M (2012) Perspectives on tight junction research. Ann N Y Acad Sci 1257:1–19

    CAS  PubMed  Google Scholar 

  3. Runkle EA, Mu D (2013) Tight junction proteins: from barrier to tumorigenesis. Cancer Lett 337:41–48

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Weber CR (2012) Dynamic properties of the tight junction barrier. Ann N Y Acad Sci 1257:77–84

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235

    CAS  PubMed  Google Scholar 

  6. Benedicto I, Molina-Jimenez F, Garcia-Buey L, Gondar V, Lopez-Cabrera M, Moreno-Otero R, Majano PL (2012) Role of tight junctions in hepatitis C virus infection. Rev Esp Enferm Dig 104:255–263

    CAS  PubMed  Google Scholar 

  7. Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, Nusrat A, Parkos CA, Dermody TS (2001) Junction adhesion molecule is a receptor for reovirus. Cell 104:441–451

    CAS  PubMed  Google Scholar 

  8. La S (1973) Further observations on the fine structure of freeze cleaved tight junctions. J Cell Sci 13:763–786

    Google Scholar 

  9. Guillemot L, Spadaro D, Citi S (2013) The junctional proteins cingulin and paracingulin modulate the expression of tight junction protein genes through GATA-4. PLoS ONE 8:e55873

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Paris L, Tonutti L, Vannini C, Bazzoni G (2008) Structural organization of the tight junctions. Biochim Biophys Acta 1778:646–659

    CAS  PubMed  Google Scholar 

  11. Mo D, Potter BA, Bertrand CA, Hildebrand JD, Bruns JR, Weisz OA (2010) Nucleofection disrupts tight junction fence function to alter membrane polarity of renal epithelial cells. Am J Physiol Renal Physiol 299:F1178–F1184

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    CAS  PubMed  Google Scholar 

  13. Assimakopoulos SF, Papageorgiou I, Charonis A (2011) Enterocytes’ tight junctions: from molecules to diseases. World J Gastrointest Pathophysiol 2:123–137

    PubMed Central  PubMed  Google Scholar 

  14. Dorfel MJ, Huber O (2012) Modulation of tight junction structure and function by kinases and phosphatases targeting occludin. J Biomed Biotechnol 2012:807356

    PubMed Central  PubMed  Google Scholar 

  15. Buschmann MM, Shen L, Rajapakse H, Raleigh DR, Wang Y, Wang Y, Lingaraju A, Zha J, Abbott E, McAuley EM, Breskin LA, Wu L, Anderson K, Turner JR, Weber CR (2013) Occludin OCEL-domain interactions are required for maintenance and regulation of the tight junction barrier to macromolecular flux. Mol Biol Cell 24:3056–3068

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Balda MS, Flores-Maldonado C, Cereijido M, Matter K (2000) Multiple domains of occludin are involved in the regulation of paracellular permeability. J Cell Biochem 78:85–96

    CAS  PubMed  Google Scholar 

  17. Ikenouchi J, Sasaki H, Tsukita S, Furuse M, Tsukita S (2008) Loss of occludin affects tricellular localization of tricellulin. Mol Biol Cell 19:4687–4693

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Saitou M, Fujimoto K, Doi Y, Itoh M, Fujimoto T, Furuse M, Takano H, Noda T, Tsukita S (1998) Occludin-deficient embryonic stem cells can differentiate into polarized epithelial cells bearing tight junctions. J Cell Biol 141:397–408

  19. Muresan Z, Paul DL, Goodenough DA (2000) Occludin 1B, a variant of the tight junction protein occludin. Mol Biol Cell 11:627–634

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Sanchez-Pulido L, Martin-Belmonte F, Valencia A, Alonso MA (2002) MARVEL: a conserved domain involved in membrane apposition events. Trends Biochem Sci 27:599–601

    CAS  PubMed  Google Scholar 

  21. Ikenouchi J, Furuse M, Furuse K, Sasaki H, Tsukita S, Tsukita S (2005) Tricellulin constitutes a novel barrier at tricellular contacts of epithelial cells. J Cell Biol 171:939–945

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Nayak G, Lee SI, Yousaf R, Edelmann SE, Trincot C, Van Itallie CM, Sinha GP, Rafeeq M, Jones SM, Belyantseva IA, Anderson JM, Forge A, Frolenkov GI, Riazuddin S (2013) Tricellulin deficiency affects tight junction architecture and cochlear hair cells. J Clin Invest 123:4036–4049

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Gunzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569

    PubMed Central  PubMed  Google Scholar 

  24. Van Itallie CM, Anderson JM (2013) Claudin interactions in and out of the tight junction. Tissue Barriers 1:e25247

    PubMed Central  PubMed  Google Scholar 

  25. Furuse M, Tsukita S (2006) Claudins in occluding junctions of humans and flies. Trends Cell Biol 16:181–188

    CAS  PubMed  Google Scholar 

  26. Krause G, Winkler L, Mueller SL, Haseloff RF, Piontek J, Blasig IE (2008) Structure and function of claudins. Biochim Biophys Acta 1778:631–645

    CAS  PubMed  Google Scholar 

  27. Chiba H, Osanai M, Murata M, Kojima T, Sawada N (2008) Transmembrane proteins of tight junctions. Biochim Biophys Acta 1778:588–600

    CAS  PubMed  Google Scholar 

  28. Stache C, Holsken A, Fahlbusch R, Flitsch J, Schlaffer SM, Buchfelder M, Buslei R (2014) Tight junction protein claudin-1 is differentially expressed in craniopharyngioma subtypes and indicates invasive tumor growth. Neuro Oncol 16:256–264

    PubMed Central  CAS  PubMed  Google Scholar 

  29. Gonzalez-Mariscal L, Betanzos A, Avila-Flores A (2000) MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol 11:315–324

    CAS  PubMed  Google Scholar 

  30. Furuse M (2010) Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol 2:a2907

    Google Scholar 

  31. Rodgers LS, Beam MT, Anderson JM, Fanning AS (2013) Epithelial barrier assembly requires coordinated activity of multiple domains of the tight junction protein ZO-1. J Cell Sci 126:1565–1575

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell 126:741–754

    CAS  PubMed  Google Scholar 

  33. Balda MS, Matter K (2003) Epithelial cell adhesion and the regulation of gene expression. Trends Cell Biol 13:310–318

    CAS  PubMed  Google Scholar 

  34. Traweger A, Fuchs R, Krizbai IA, Weiger TM, Bauer HC, Bauer H (2003) The tight junction protein ZO-2 localizes to the nucleus and interacts with the heterogeneous nuclear ribonucleoprotein scaffold attachment factor-B. J Biol Chem 278:2692–2700

    CAS  PubMed  Google Scholar 

  35. Betanzos A, Huerta M, Lopez-Bayghen E, Azuara E, Amerena J, Gonzalez-Mariscal L (2004) The tight junction protein ZO-2 associates with Jun, Fos and C/EBP transcription factors in epithelial cells. Exp Cell Res 292:51–66

    CAS  PubMed  Google Scholar 

  36. Tapia R, Huerta M, Islas S, Avila-Flores A, Lopez-Bayghen E, Weiske J, Huber O, Gonzalez-Mariscal L (2009) Zona occludens-2 inhibits cyclin D1 expression and cell proliferation and exhibits changes in localization along the cell cycle. Mol Biol Cell 20:1102–1117

    PubMed Central  CAS  PubMed  Google Scholar 

  37. Dorfel MJ, Westphal JK, Bellmann C, Krug SM, Cording J, Mittag S, Tauber R, Fromm M, Blasig IE, Huber O (2013) CK2-dependent phosphorylation of occludin regulates the interaction with ZO-proteins and tight junction integrity. Cell Commun Signal 11:40

    PubMed Central  PubMed  Google Scholar 

  38. Raleigh DR, Boe DM, Yu D, Weber CR, Marchiando AM, Bradford EM, Wang Y, Wu L, Schneeberger EE, Shen L, Turner JR (2011) Occludin S408 phosphorylation regulates tight junction protein interactions and barrier function. J Cell Biol 193:565–582

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Van Itallie CM, Fanning AS, Holmes J, Anderson JM (2010) Occludin is required for cytokine-induced regulation of tight junction barriers. J Cell Sci 123:2844–2852

    PubMed Central  PubMed  Google Scholar 

  40. Marchiando AM, Shen L, Graham WV, Weber CR, Schwarz BT, Austin JN, Raleigh DR, Guan Y, Watson AJ, Montrose MH, Turner JR (2010) Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol 189:111–126

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Van Itallie CM, Gambling TM, Carson JL, Anderson JM (2005) Palmitoylation of claudins is required for efficient tight-junction localization. J Cell Sci 118:1427–1436

    PubMed  Google Scholar 

  42. Ahmad W, Shabbiri K, Ijaz B, Asad S, Sarwar MT, Gull S, Kausar H, Fouzia K, Shahid I, Hassan S (2011) Claudin-1 required for HCV virus entry has high potential for phosphorylation and O-glycosylation. Virol J 8:229

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Straight SW, Shin K, Fogg VC, Fan S, Liu CJ, Roh M, Margolis B (2004) Loss of PALS1 expression leads to tight junction and polarity defects. Mol Biol Cell 15:1981–1990

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Ramachandran C, Srinivas SP (2010) Formation and disassembly of adherens and tight junctions in the corneal endothelium: regulation by actomyosin contraction. Invest Ophthalmol Vis Sci 51:2139–2148

    PubMed Central  PubMed  Google Scholar 

  45. Petecchia L, Sabatini F, Usai C, Caci E, Varesio L, Rossi GA (2012) Cytokines induce tight junction disassembly in airway cells via an EGFR-dependent MAPK/ERK1/2-pathway. Lab Invest 92:1140–1148

    CAS  PubMed  Google Scholar 

  46. Bleich M, Shan Q, Himmerkus N (2012) Calcium regulation of tight junction permeability. Ann N Y Acad Sci 1258:93–99

    CAS  PubMed  Google Scholar 

  47. Bao J, Yura RE, Matters GL, Bradley SG, Shi P, Tian F, Bond JS (2013) Meprin A impairs epithelial barrier function, enhances monocyte migration, and cleaves the tight junction protein occludin. Am J Physiol Renal Physiol 305:F714–F726

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Ye P (2012) Modulation of epithelial tight junctions by TGF-beta 3 in cultured oral epithelial cells. Aust Dent J 57:11–17

    CAS  PubMed  Google Scholar 

  49. Al-Sadi R, Guo S, Ye D, Ma TY (2013) TNF-alpha modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. Am J Pathol 183:1871–1884

    CAS  PubMed  Google Scholar 

  50. Ye J, Tsukamoto T, Sun A, Nigam SK (1999) A role for intracellular calcium in tight junction reassembly after ATP depletion-repletion. Am J Physiol 277:F524–F532

    CAS  PubMed  Google Scholar 

  51. Oshima T, Miwa H, Joh T (2008) Changes in the expression of claudins in active ulcerative colitis. J Gastroenterol Hepatol 23(Suppl 2):S146–S150

    CAS  PubMed  Google Scholar 

  52. Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56:61–72

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Shepard CW, Finelli L, Alter MJ (2005) Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 5:558–567

    PubMed  Google Scholar 

  54. Molina S, Castet V, Fournier-Wirth C, Pichard-Garcia L, Avner R, Harats D, Roitelman J, Barbaras R, Graber P, Ghersa P, Smolarsky M, Funaro A, Malavasi F, Larrey D, Coste J, Fabre JM, Sa-Cunha A, Maurel P (2007) The low-density lipoprotein receptor plays a role in the infection of primary human hepatocytes by hepatitis C virus. J Hepatol 46:411–419

    CAS  PubMed  Google Scholar 

  55. Barth H, Schafer C, Adah MI, Zhang F, Linhardt RJ, Toyoda H, Kinoshita-Toyoda A, Toida T, Van Kuppevelt TH, Depla E, Von Weizsacker F, Blum HE, Baumert TF (2003) Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 278:41003–41012

    CAS  PubMed  Google Scholar 

  56. Zeisel MB, Fofana I, Fafi-Kremer S, Baumert TF (2011) Hepatitis C virus entry into hepatocytes: molecular mechanisms and targets for antiviral therapies. J Hepatol 54:566–576

    CAS  PubMed  Google Scholar 

  57. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S (1998) Binding of hepatitis C virus to CD81. Science 282:938–941

    CAS  PubMed  Google Scholar 

  58. Scarselli E, Ansuini H, Cerino R, Roccasecca RM, Acali S, Filocamo G, Traboni C, Nicosia A, Cortese R, Vitelli A (2002) The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J 21:5017–5025

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM (2007) Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature 446:801–805

    CAS  PubMed  Google Scholar 

  60. Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM (2009) Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457:882–886

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Krieger SE, Zeisel MB, Davis C, Thumann C, Harris HJ, Schnober EK, Mee C, Soulier E, Royer C, Lambotin M, Grunert F, Dao TV, Dreux M, Cosset FL, McKeating JA, Schuster C, Baumert TF (2010) Inhibition of hepatitis C virus infection by anti-claudin-1 antibodies is mediated by neutralization of E2-CD81-claudin-1 associations. Hepatology 51:1144–1157

    CAS  PubMed  Google Scholar 

  62. Meertens L, Bertaux C, Cukierman L, Cormier E, Lavillette D, Cosset FL, Dragic T (2008) The tight junction proteins claudin-1, -6, and -9 are entry cofactors for hepatitis C virus. J Virol 82:3555–3560

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, Rouille Y (2006) Hepatitis C virus entry depends on clathrin-mediated endocytosis. J Virol 80:6964–6972

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Meertens L, Bertaux C, Dragic T (2006) Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J Virol 80:11571–11578

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Harris HJ, Davis C, Mullins JG, Hu K, Goodall M, Farquhar MJ, Mee CJ, McCaffrey K, Young S, Drummer H, Balfe P, McKeating JA (2010) Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem 285:21092–21102

    PubMed Central  CAS  PubMed  Google Scholar 

  66. Farquhar MJ, Hu K, Harris HJ, Davis C, Brimacombe CL, Fletcher SJ, Baumert TF, Rappoport JZ, Balfe P, McKeating JA (2012) Hepatitis C virus induces CD81 and claudin-1 endocytosis. J Virol 86:4305–4316

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Reynolds GM, Harris HJ, Jennings A, Hu K, Grove J, Lalor PF, Adams DH, Balfe P, Hubscher SG, McKeating JA (2008) Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology 47:418–427

    PubMed  Google Scholar 

  68. Brazzoli M, Bianchi A, Filippini S, Weiner A, Zhu Q, Pizza M, Crotta S (2008) CD81 is a central regulator of cellular events required for hepatitis C virus infection of human hepatocytes. J Virol 82:8316–8329

    PubMed Central  CAS  PubMed  Google Scholar 

  69. Benedicto I, Molina-Jimenez F, Bartosch B, Cosset FL, Lavillette D, Prieto J, Moreno-Otero R, Valenzuela-Fernandez A, Aldabe R, Lopez-Cabrera M, Majano PL (2009) The tight junction-associated protein occludin is required for a postbinding step in hepatitis C virus entry and infection. J Virol 83:8012–8020

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Benedicto I, Molina-Jimenez F, Barreiro O, Maldonado-Rodriguez A, Prieto J, Moreno-Otero R, Aldabe R, Lopez-Cabrera M, Majano PL (2008) Hepatitis C virus envelope components alter localization of hepatocyte tight junction-associated proteins and promote occludin retention in the endoplasmic reticulum. Hepatology 48:1044–1053

    CAS  PubMed  Google Scholar 

  71. Brimacombe CL, Grove J, Meredith LW, Hu K, Syder AJ, Flores MV, Timpe JM, Krieger SE, Baumert TF, Tellinghuisen TL, Wong-Staal F, Balfe P, McKeating JA (2011) Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J Virol 85:596–605

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Liu S, Yang W, Shen L, Turner JR, Coyne CB, Wang T (2009) Tight junction proteins claudin-1 and occludin control hepatitis C virus entry and are downregulated during infection to prevent superinfection. J Virol 83:2011–2014

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Si Y, Liu S, Liu X, Jacobs JL, Cheng M, Niu Y, Jin Q, Wang T, Yang W (2012) A human claudin-1-derived peptide inhibits hepatitis C virus entry. Hepatology 56:507–515

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Wilson GK, Brimacombe CL, Rowe IA, Reynolds GM, Fletcher NF, Stamataki Z, Bhogal RH, Simoes ML, Ashcroft M, Afford SC, Mitry RR, Dhawan A, Mee CJ, Hubscher SG, Balfe P, McKeating JA (2012) A dual role for hypoxia inducible factor-1alpha in the hepatitis C virus lifecycle and hepatoma migration. J Hepatol 56:803–809

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Mee CJ, Grove J, Harris HJ, Hu K, Balfe P, McKeating JA (2008) Effect of cell polarization on hepatitis C virus entry. J Virol 82:461–470

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Mee CJ, Harris HJ, Farquhar MJ, Wilson G, Reynolds G, Davis C, van IJzendoorn SC, Balfe P, McKeating JA (2009) Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells. J Virol 83:6211–6221

  77. Farquhar MJ, Harris HJ, Diskar M, Jones S, Mee CJ, Nielsen SU, Brimacombe CL, Molina S, Toms GL, Maurel P, Howl J, Herberg FW, van Ijzendoorn SC, Balfe P, McKeating JA (2008) Protein kinase A-dependent step(s) in hepatitis C virus entry and infectivity. J Virol 82:8797–8811

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2:123–140

    CAS  PubMed  Google Scholar 

  79. Dean P, Kenny B (2009) The effector repertoire of enteropathogenic E. coli: ganging up on the host cell. Curr Opin Microbiol 12:101–109

    PubMed Central  CAS  PubMed  Google Scholar 

  80. Lai Y, Rosenshine I, Leong JM, Frankel G (2013) Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia coli. Cell Microbiol 15:1796–1808

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Kenny B, Finlay BB (1997) Intimin-dependent binding of enteropathogenic Escherichia coli to host cells triggers novel signaling events, including tyrosine phosphorylation of phospholipase C-gamma1. Infect Immun 65:2528–2536

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Kenny B, Ellis S, Leard AD, Warawa J, Mellor H, Jepson MA (2002) Co-ordinate regulation of distinct host cell signalling pathways by multifunctional enteropathogenic Escherichia coli effector molecules. Mol Microbiol 44:1095–1107

    CAS  PubMed  Google Scholar 

  83. Weflen AW, Alto NM, Hecht GA (2009) Tight junctions and enteropathogenic E. coli. Ann N Y Acad Sci 1165:169–174

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Dean P, Kenny B (2004) Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol Microbiol 54:665–675

    CAS  PubMed  Google Scholar 

  85. Miyake M, Hanajima M, Matsuzawa T, Kobayashi C, Minami M, Abe A, Horiguchi Y (2005) Binding of intimin with Tir on the bacterial surface is prerequisite for the barrier disruption induced by enteropathogenic Escherichia coli. Biochem Biophys Res Commun 337:922–927

    CAS  PubMed  Google Scholar 

  86. Thanabalasuriar A, Koutsouris A, Weflen A, Mimee M, Hecht G, Gruenheid S (2010) The bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by enteropathogenic Escherichia coli. Cell Microbiol 12:31–41

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Kim J, Thanabalasuriar A, Chaworth-Musters T, Fromme JC, Frey EA, Lario PI, Metalnikov P, Rizg K, Thomas NA, Lee SF, Hartland EL, Hardwidge PR, Pawson T, Strynadka NC, Finlay BB, Schekman R, Gruenheid S (2007) The bacterial virulence factor NleA inhibits cellular protein secretion by disrupting mammalian COPII function. Cell Host Microbe 2:160–171

    CAS  PubMed  Google Scholar 

  88. Thanabalasuriar A, Kim J, Gruenheid S (2013) The inhibition of COPII trafficking is important for intestinal epithelial tight junction disruption during enteropathogenic Escherichia coli and Citrobacter rodentium infection. Microbes Infect 15:738–744

    CAS  PubMed  Google Scholar 

  89. Tomson FL, Viswanathan VK, Kanack KJ, Kanteti RP, Straub KV, Menet M, Kaper JB, Hecht G (2005) Enteropathogenic Escherichia coli EspG disrupts microtubules and in conjunction with Orf3 enhances perturbation of the tight junction barrier. Mol Microbiol 56:447–464

    CAS  PubMed  Google Scholar 

  90. Benais-Pont G, Punn A, Flores-Maldonado C, Eckert J, Raposo G, Fleming TP, Cereijido M, Balda MS, Matter K (2003) Identification of a tight junction-associated guanine nucleotide exchange factor that activates Rho and regulates paracellular permeability. J Cell Biol 160:729–740

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Hopkins AM, Walsh SV, Verkade P, Boquet P, Nusrat A (2003) Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function. J Cell Sci 116:725–742

    CAS  PubMed  Google Scholar 

  92. Sason H, Milgrom M, Weiss AM, Melamed-Book N, Balla T, Grinstein S, Backert S, Rosenshine I, Aroeti B (2009) Enteropathogenic Escherichia coli subverts phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate upon epithelial cell infection. Mol Biol Cell 20:544–555

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Zhang Q, Li Q, Wang C, Li N, Li J (2012) Redistribution of tight junction proteins during EPEC infection in vivo. Inflammation 35:23–32

    PubMed  Google Scholar 

  94. Muza-Moons MM, Schneeberger EE, Hecht GA (2004) Enteropathogenic Escherichia coli infection leads to appearance of aberrant tight junctions strands in the lateral membrane of intestinal epithelial cells. Cell Microbiol 6:783–793

    CAS  PubMed  Google Scholar 

  95. Simonovic I, Arpin M, Koutsouris A, Falk-Krzesinski HJ, Hecht G (2001) Enteropathogenic Escherichia coli activates ezrin, which participates in disruption of tight junction barrier function. Infect Immun 69:5679–5688

    PubMed Central  CAS  PubMed  Google Scholar 

  96. Manjarrez-Hernandez HA, Amess B, Sellers L, Baldwin TJ, Knutton S, Williams PH, Aitken A (1991) Purification of a 20 kDa phosphoprotein from epithelial cells and identification as a myosin light chain. Phosphorylation induced by enteropathogenic Escherichia coli and phorbol ester. FEBS Lett 292:121–127

    CAS  PubMed  Google Scholar 

  97. Shen L, Black ED, Witkowski ED, Lencer WI, Guerriero V, Schneeberger EE, Turner JR (2006) Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci 119:2095–2106

    CAS  PubMed  Google Scholar 

  98. Cunningham KE, Turner JR (2012) Myosin light chain kinase: pulling the strings of epithelial tight junction function. Ann N Y Acad Sci 1258:34–42

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Kaper JB (1998) Enterohemorrhagic Escherichia coli. Curr Opin Microbiol 1:103–108

    CAS  PubMed  Google Scholar 

  100. Howe KL, Reardon C, Wang A, Nazli A, McKay DM (2005) Transforming growth factor-beta regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157:H7-induced increased permeability. Am J Pathol 167:1587–1597

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Furuse M, Furuse K, Sasaki H, Tsukita S (2001) Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin–Darby canine kidney I cells. J Cell Biol 153:263–272

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Roxas JL, Koutsouris A, Bellmeyer A, Tesfay S, Royan S, Falzari K, Harris A, Cheng H, Rhee KJ, Hecht G (2010) Enterohemorrhagic E. coli alters murine intestinal epithelial tight junction protein expression and barrier function in a Shiga toxin independent manner. Lab Invest 90:1152–1168

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Mankertz J, Amasheh M, Krug SM, Fromm A, Amasheh S, Hillenbrand B, Tavalali S, Fromm M, Schulzke JD (2009) TNFalpha up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell Tissue Res 336:67–77

    CAS  PubMed  Google Scholar 

  104. Amasheh S, Meiri N, Gitter AH, Schoneberg T, Mankertz J, Schulzke JD, Fromm M (2002) Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. J Cell Sci 115:4969–4976

    CAS  PubMed  Google Scholar 

  105. Zeissig S, Burgel N, Gunzel D, Richter J, Mankertz J, Wahnschaffe U, Kroesen AJ, Zeitz M, Fromm M, Schulzke JD (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn’s disease. Gut 56:61–72

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Viswanathan VK, Koutsouris A, Lukic S, Pilkinton M, Simonovic I, Simonovic M, Hecht G (2004) Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function. Infect Immun 72:3218–3227

    PubMed Central  CAS  PubMed  Google Scholar 

  107. Wong AR, Pearson JS, Bright MD, Munera D, Robinson KS, Lee SF, Frankel G, Hartland EL (2011) Enteropathogenic and enterohaemorrhagic Escherichia coli: even more subversive elements. Mol Microbiol 80:1420–1438

    CAS  PubMed  Google Scholar 

  108. Strauman MC, Harper JM, Harrington SM, Boll EJ, Nataro JP (2010) Enteroaggregative Escherichia coli disrupts epithelial cell tight junctions. Infect Immun 78:4958–4964

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Ngendahayo MC, Dubreuil JD (2013) Escherichia coli heat-stable toxin b impairs intestinal epithelial barrier function by altering tight junction proteins. Infect Immun 81:2819–2827

    Google Scholar 

  110. Czeczulin JR, Hanna PC, McClane BA (1993) Cloning, nucleotide sequencing, and expression of the Clostridium perfringens enterotoxin gene in Escherichia coli. Infect Immun 61:3429–3439

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Robertson SL, Smedley JR, Singh U, Chakrabarti G, Van Itallie CM, Anderson JM, McClane BA (2007) Compositional and stoichiometric analysis of Clostridium perfringens enterotoxin complexes in Caco-2 cells and claudin 4 fibroblast transfectants. Cell Microbiol 9:2734–2755

    CAS  PubMed  Google Scholar 

  112. Veshnyakova A, Protze J, Rossa J, Blasig IE, Krause G, Piontek J (2010) On the interaction of Clostridium perfringens enterotoxin with claudins. Toxins (Basel) 2:1336–1356

    CAS  Google Scholar 

  113. Mitchell LA, Koval M (2010) Specificity of interaction between Clostridium perfringens enterotoxin and claudin-family tight junction proteins. Toxins (Basel) 2:1595–1611

    CAS  Google Scholar 

  114. Fujita K, Katahira J, Horiguchi Y, Sonoda N, Furuse M, Tsukita S (2000) Clostridium perfringens enterotoxin binds to the second extracellular loop of claudin-3, a tight junction integral membrane protein. FEBS Lett 476:258–261

    CAS  PubMed  Google Scholar 

  115. Katahira J, Sugiyama H, Inoue N, Horiguchi Y, Matsuda M, Sugimoto N (1997) Clostridium perfringens enterotoxin utilizes two structurally related membrane proteins as functional receptors in vivo. J Biol Chem 272:26652–26658

    CAS  PubMed  Google Scholar 

  116. Wieckowski EU, Wnek AP, McClane BA (1994) Evidence that an approximately 50-kDa mammalian plasma membrane protein with receptor-like properties mediates the amphiphilicity of specifically bound Clostridium perfringens enterotoxin. J Biol Chem 269:10838–10848

    CAS  PubMed  Google Scholar 

  117. Smedley JR, Uzal FA, McClane BA (2007) Identification of a prepore large-complex stage in the mechanism of action of Clostridium perfringens enterotoxin. Infect Immun 75:2381–2390

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Chakrabarti G, McClane BA (2005) The importance of calcium influx, calpain and calmodulin for the activation of CaCo-2 cell death pathways by Clostridium perfringens enterotoxin. Cell Microbiol 7:129–146

    CAS  PubMed  Google Scholar 

  119. Singh U, Van Itallie CM, Mitic LL, Anderson JM, McClane BA (2000) CaCo-2 cells treated with Clostridium perfringens enterotoxin form multiple large complex species, one of which contains the tight junction protein occludin. J Biol Chem 275:18407–18417

    CAS  PubMed  Google Scholar 

  120. Robertson SL, McClane BA (2011) Interactions between Clostridium perfringens enterotoxin and claudins. Methods Mol Biol 762:63–75

    CAS  PubMed  Google Scholar 

  121. Sonoda N, Furuse M, Sasaki H, Yonemura S, Katahira J, Horiguchi Y, Tsukita S (1999) Clostridium perfringens enterotoxin fragment removes specific claudins from tight junction strands: evidence for direct involvement of claudins in tight junction barrier. J Cell Biol 147:195–204

    PubMed Central  PubMed  Google Scholar 

  122. Nichols LS, Ashfaq R, Iacobuzio-Donahue CA (2004) Claudin 4 protein expression in primary and metastatic pancreatic cancer: support for use as a therapeutic target. Am J Clin Pathol 121:226–230

    CAS  PubMed  Google Scholar 

  123. Landers KA, Samaratunga H, Teng L, Buck M, Burger MJ, Scells B, Lavin MF, Gardiner RA (2008) Identification of claudin-4 as a marker highly overexpressed in both primary and metastatic prostate cancer. Br J Cancer 99:491–501

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Rangel LB, Agarwal R, D’Souza T, Pizer ES, Alo PL, Lancaster WD, Gregoire L, Schwartz DR, Cho KR, Morin PJ (2003) Tight junction proteins claudin-3 and claudin-4 are frequently overexpressed in ovarian cancer but not in ovarian cystadenomas. Clin Cancer Res 9:2567–2575

    CAS  PubMed  Google Scholar 

  125. Maeda T, Murata M, Chiba H, Takasawa A, Tanaka S, Kojima T, Masumori N, Tsukamoto T, Sawada N (2012) Claudin-4-targeted therapy using Clostridium perfringens enterotoxin for prostate cancer. Prostate 72:351–360

    CAS  PubMed  Google Scholar 

  126. Kominsky SL, Vali M, Korz D, Gabig TG, Weitzman SA, Argani P, Sukumar S (2004) Clostridium perfringens enterotoxin elicits rapid and specific cytolysis of breast carcinoma cells mediated through tight junction proteins claudin 3 and 4. Am J Pathol 164:1627–1633

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Wessler S, Backert S (2008) Molecular mechanisms of epithelial-barrier disruption by Helicobacter pylori. Trends Microbiol 16:397–405

    CAS  PubMed  Google Scholar 

  128. Backert S, Meyer TF (2006) Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol 9:207–217

    CAS  PubMed  Google Scholar 

  129. Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, Konig W, Backert S (2007) Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 449:862–866

    CAS  PubMed  Google Scholar 

  130. Bagnoli F, Buti L, Tompkins L, Covacci A, Amieva MR (2005) Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. Proc Natl Acad Sci USA 102:16339–16344

    PubMed Central  CAS  PubMed  Google Scholar 

  131. Amieva MR, Vogelmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S (2003) Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300:1430–1434

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Krueger S, Hundertmark T, Kuester D, Kalinski T, Peitz U, Roessner A (2007) Helicobacter pylori alters the distribution of ZO-1 and p120ctn in primary human gastric epithelial cells. Pathol Res Pract 203:433–444

    CAS  PubMed  Google Scholar 

  133. Kourtidis A, Ngok SP, Anastasiadis PZ (2013) p120 catenin: an essential regulator of cadherin stability, adhesion-induced signaling, and cancer progression. Prog Mol Biol Transl Sci 116:409–432

    CAS  PubMed  Google Scholar 

  134. Hatakeyama M (2003) Helicobacter pylori CagA–a potential bacterial oncoprotein that functionally mimics the mammalian Gab family of adaptor proteins. Microbes Infect 5:143–150

    CAS  PubMed  Google Scholar 

  135. Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N, Saito Y, Lu H, Ohnishi N, Azuma T, Suzuki A, Ohno S, Hatakeyama M (2007) Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447:330–333

    CAS  PubMed  Google Scholar 

  136. Ricci V, Galmiche A, Doye A, Necchi V, Solcia E, Boquet P (2000) High cell sensitivity to Helicobacter pylori VacA toxin depends on a GPI-anchored protein and is not blocked by inhibition of the clathrin-mediated pathway of endocytosis. Mol Biol Cell 11:3897–3909

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Rieder G, Fischer W, Haas R (2005) Interaction of Helicobacter pylori with host cells: function of secreted and translocated molecules. Curr Opin Microbiol 8:67–73

    CAS  PubMed  Google Scholar 

  138. Papini E, Satin B, Norais N, de Bernard M, Telford JL, Rappuoli R, Montecucco C (1998) Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J Clin Invest 102:813–820

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Dubois A, Boren T (2007) Helicobacter pylori is invasive and it may be a facultative intracellular organism. Cell Microbiol 9:1108–1116

    PubMed Central  CAS  PubMed  Google Scholar 

  140. Lapointe TK, O’Connor PM, Jones NL, Menard D, Buret AG (2010) Interleukin-1 receptor phosphorylation activates Rho kinase to disrupt human gastric tight junctional claudin-4 during Helicobacter pylori infection. Cell Microbiol 12:692–703

    CAS  PubMed  Google Scholar 

  141. Fedwick JP, Lapointe TK, Meddings JB, Sherman PM, Buret AG (2005) Helicobacter pylori activates myosin light-chain kinase to disrupt claudin-4 and claudin-5 and increase epithelial permeability. Infect Immun 73:7844–7852

    PubMed Central  CAS  PubMed  Google Scholar 

  142. Wroblewski LE, Shen L, Ogden S, Romero-Gallo J, Lapierre LA, Israel DA, Turner JR, Peek RJ (2009) Helicobacter pylori dysregulation of gastric epithelial tight junctions by urease-mediated myosin II activation. Gastroenterology 136:236–246

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Lytton SD, Fischer W, Nagel W, Haas R, Beck FX (2005) Production of ammonium by Helicobacter pylori mediates occludin processing and disruption of tight junctions in Caco-2 cells. Microbiology 151:3267–3276

    CAS  PubMed  Google Scholar 

  144. Terres AM, Pajares JM, Hopkins AM, Murphy A, Moran A, Baird AW, Kelleher D (1998) Helicobacter pylori disrupts epithelial barrier function in a process inhibited by protein kinase C activators. Infect Immun 66:2943–2950

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Wang H, Li Z, Yumul R, Lara S, Hemminki A, Fender P, Lieber A (2011) Multimerization of adenovirus serotype 3 fiber knob domains is required for efficient binding of virus to desmoglein 2 and subsequent opening of epithelial junctions. J Virol 85:6390–6402

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS, Horwitz MS, Crowell RL, Finberg RW (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323

    CAS  PubMed  Google Scholar 

  147. Raschperger E, Thyberg J, Pettersson S, Philipson L, Fuxe J, Pettersson RF (2006) The coxsackie- and adenovirus receptor (CAR) is an in vivo marker for epithelial tight junctions, with a potential role in regulating permeability and tissue homeostasis. Exp Cell Res 312:1566–1580

    CAS  PubMed  Google Scholar 

  148. Cohen CJ, Shieh JT, Pickles RJ, Okegawa T, Hsieh JT, Bergelson JM (2001) The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc Natl Acad Sci USA 98:15191–15196

    PubMed Central  CAS  PubMed  Google Scholar 

  149. Walters RW, Grunst T, Bergelson JM, Finberg RW, Welsh MJ, Zabner J (1999) Basolateral localization of fiber receptors limits adenovirus infection from the apical surface of airway epithelia. J Biol Chem 274:10219–10226

    CAS  PubMed  Google Scholar 

  150. Walters RW, Freimuth P, Moninger TO, Ganske I, Zabner J, Welsh MJ (2002) Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 110:789–799

    CAS  PubMed  Google Scholar 

  151. Excoffon KJ, Gansemer ND, Mobily ME, Karp PH, Parekh KR, Zabner J (2010) Isoform-specific regulation and localization of the coxsackie and adenovirus receptor in human airway epithelia. PLoS ONE 5:e9909

    PubMed Central  PubMed  Google Scholar 

  152. Coyne CB, Voelker T, Pichla SL, Bergelson JM (2004) The coxsackievirus and adenovirus receptor interacts with the multi-PDZ domain protein-1 (MUPP-1) within the tight junction. J Biol Chem 279:48079–48084

    CAS  PubMed  Google Scholar 

  153. Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S (2002) Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 277:455–461

    CAS  PubMed  Google Scholar 

  154. Wang X, Bergelson JM (1999) Coxsackievirus and adenovirus receptor cytoplasmic and transmembrane domains are not essential for coxsackievirus and adenovirus infection. J Virol 73:2559–2562

    PubMed Central  CAS  PubMed  Google Scholar 

  155. Burckhardt CJ, Suomalainen M, Schoenenberger P, Boucke K, Hemmi S, Greber UF (2011) Drifting motions of the adenovirus receptor CAR and immobile integrins initiate virus uncoating and membrane lytic protein exposure. Cell Host Microbe 10:105–117

    CAS  PubMed  Google Scholar 

  156. Goosney DL, Nemerow GR (2003) Adenovirus infection: taking the back roads to viral entry. Curr Biol 13:R99–R100

    CAS  PubMed  Google Scholar 

  157. Latorre IJ, Roh MH, Frese KK, Weiss RS, Margolis B, Javier RT (2005) Viral oncoprotein-induced mislocalization of select PDZ proteins disrupts tight junctions and causes polarity defects in epithelial cells. J Cell Sci 118:4283–4293

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Masaki T, Kojima T, Okabayashi T, Ogasawara N, Ohkuni T, Obata K, Takasawa A, Murata M, Tanaka S, Hirakawa S, Fuchimoto J, Ninomiya T, Fujii N, Tsutsumi H, Himi T, Sawada N (2011) A nuclear factor-kappaB signaling pathway via protein kinase C delta regulates replication of respiratory syncytial virus in polarized normal human nasal epithelial cells. Mol Biol Cell 22:2144–2156

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Tsutsumi H, Kojima T, Hirakawa S, Masaki T, Okabayashi T, Yokota S, Fujii N, Himi T, Sawada N (2011) Respiratory syncytial virus infection and the tight junctions of nasal epithelial cells. Adv Otorhinolaryngol 72:153–156

    PubMed  Google Scholar 

  160. Salameh S, Sheth U, Shukla D (2012) Early events in herpes simplex virus lifecycle with implications for an infection of lifetime. Open Virol J 6:1–6

    PubMed Central  CAS  PubMed  Google Scholar 

  161. Sun J, Kintner J, Schoborg RV (2008) The host adherens junction molecule nectin-1 is downregulated in Chlamydia trachomatis-infected genital epithelial cells. Microbiology 154:1290–1299

    CAS  PubMed  Google Scholar 

  162. Kessler M, Zielecki J, Thieck O, Mollenkopf HJ, Fotopoulou C, Meyer TF (2012) Chlamydia trachomatis disturbs epithelial tissue homeostasis in fallopian tubes via paracrine Wnt signaling. Am J Pathol 180:186–198

    CAS  PubMed  Google Scholar 

  163. Rodriguez-Tirado C, Maisey K, Rodriguez FE, Reyes-Cerpa S, Reyes-Lopez FE, Imarai M (2012) Neisseria gonorrhoeae induced disruption of cell junction complexes in epithelial cells of the human genital tract. Microbes Infect 14:290–300

    CAS  PubMed  Google Scholar 

  164. Nazli A, Chan O, Dobson-Belaire WN, Ouellet M, Tremblay MJ, Gray-Owen SD, Arsenault AL, Kaushic C (2010) Exposure to HIV-1 directly impairs mucosal epithelial barrier integrity allowing microbial translocation. PLoS Pathog 6:e1000852

    PubMed Central  PubMed  Google Scholar 

  165. Kaushic C (2011) HIV-1 infection in the female reproductive tract: role of interactions between HIV-1 and genital epithelial cells. Am J Reprod Immunol 65:253–260

    CAS  PubMed  Google Scholar 

  166. Ma TY, Iwamoto GK, Hoa NT, Akotia V, Pedram A, Boivin MA, Said HM (2004) TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 286:G367–G376

    CAS  PubMed  Google Scholar 

  167. Zheng J, Xie Y, Campbell R, Song J, Massachi S, Razi M, Chiu R, Berenson J, Yang OO, Chen IS, Pang S (2005) Involvement of claudin-7 in HIV infection of CD4(−) cells. Retrovirology 2:79

    PubMed Central  PubMed  Google Scholar 

  168. Khaliq S, Khaliq SA, Zahur M, Ijaz B, Jahan S, Ansar M, Riazuddin S, Hassan S (2010) RNAi as a new therapeutic strategy against HCV. Biotechnol Adv 28:27–34

    CAS  PubMed  Google Scholar 

  169. Wilkins C, Woodward J, Lau DT, Barnes A, Joyce M, McFarlane N, McKeating JA, Tyrrell DL, Gale MJ (2013) IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology 57:461–469

    PubMed Central  CAS  PubMed  Google Scholar 

  170. Krug SM, Gunzel D, Conrad MP, Rosenthal R, Fromm A, Amasheh S, Schulzke JD, Fromm M (2012) Claudin-17 forms tight junction channels with distinct anion selectivity. Cell Mol Life Sci 69:2765–2778

    CAS  PubMed  Google Scholar 

  171. Zhang J, Zhu X, Jin Y, Shan W, Huang Y (2014) Mechanism study of cellular uptake and tight junctions opening mediated by goblet cell-specific trimethyl chitosan nanoparticles. Mol Pharm 11(5):1520–1532

    CAS  PubMed  Google Scholar 

  172. Ali S, Rytting E (2014) Influences of nanomaterials on the barrier function of epithelial cells. Adv Exp Med Biol 811:45–54

    CAS  PubMed  Google Scholar 

  173. Rosenthal R, Heydt MS, Amasheh M, Stein C, Fromm M, Amasheh S (2012) Analysis of absorption enhancers in epithelial cell models. Ann N Y Acad Sci 1258:86–92

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to all members of the Sperm Laboratory at Zhejiang University for their enlightening discussion. Dr. Hans-U. Dahms is thanked for the critical reading of an earlier draft of this MS. This project was supported in part the National Natural Science Foundation of China (No. 81100393 and 41276151).

Conflict of interest

Authors declare there is no conflict of interest regarding this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wan-Xi Yang or Yan-Jun Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, RY., Yang, WX. & Hu, YJ. The role of epithelial tight junctions involved in pathogen infections. Mol Biol Rep 41, 6591–6610 (2014). https://doi.org/10.1007/s11033-014-3543-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3543-5

Keywords

Navigation