Skip to main content
Log in

Convergent transcription through microsatellite repeat tracts induces cell death

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Microsatellite sequences, composed of short tandem repeats and randomly distributed in human genome, can become unstable during various DNA metabolic processes. Expansions of CAG, GAA, CGG and CCTG repeats located in specific genes are responsible for several human disorders. It is known that a major percentage of human genes simultaneously express both sense and antisense transcripts. Recently, we reported that convergent transcription through a CAG95 tract in human cells leads to cell cycle arrest as well as robust apoptosis. In this study, we studied the effects of convergent transcription through other types of repeats, using cell lines that contain substrates with inducible sense and antisense transcription through CGG66, GAA102, or CCTG134 tracts. We found that convergent transcription through all these repeats inhibits cell growth and induces cell death, though more moderately than convergent transcription through a CAG tract. These results suggest that convergent transcription through various types of tandem repeats represent a novel type of stress to cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev 72:686–727

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Lin Y, Dion V, Wilson JH (2006) Transcription and triplet repeat instability. In: Wells R, Ashizawa T (eds) Genetic instability and neurological diseases. Elsevier, Amsterdam, pp 691–704

    Chapter  Google Scholar 

  3. Lopez Castel A, Cleary JD, Pearson CE (2010) Repeat instability as the basis for human diseases and as a potential target for therapy. Nat Rev Mol Cell Biol 11:165–170

    Article  PubMed  Google Scholar 

  4. Pearson CE, Edamura KN, Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6:729–742

    Article  CAS  PubMed  Google Scholar 

  5. Wells RD, Dere R, Hebert ML, Napierala M, Son LS (2005) Advances in mechanisms of genetic instability related to hereditary neurological diseases. Nucleic Acids Res 33:3785–3798

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Lin Y, Hubert L Jr, Wilson JH (2009) Transcription destabilizes triplet repeats. Mol Carcinog 48:350–361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Cleary JD, Pearson CE (2003) The contribution of cis-elements to disease-associated repeat instability: clinical and experimental evidence. Cytogenet Genome Res 100:25–55

    Article  CAS  PubMed  Google Scholar 

  8. Mirkin SM (2007) Expandable DNA repeats and human disease. Nature 447:932–940

    Article  CAS  PubMed  Google Scholar 

  9. Wells RD (2007) Non-B DNA conformations, mutagenesis and disease. Trends Biochem Sci 32:271–278

    Article  CAS  PubMed  Google Scholar 

  10. Pearson CE, Sinden RR (1996) Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry 35:5041–5053

    Article  CAS  PubMed  Google Scholar 

  11. Gacy AM, Goellner G, Juranic N, Macura S, McMurray CT (1995) Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell 81:533–540

    Article  CAS  PubMed  Google Scholar 

  12. Wang G, Vasquez KM (2006) Non-B DNA structure-induced genetic instability. Mutat Res 598:103–119

    Article  CAS  PubMed  Google Scholar 

  13. Bacolla A, Larson JE, Collins JR, Li J, Milosavljevic A, Stenson PD et al (2008) Abundance and length of simple repeats in vertebrate genomes are determined by their structural properties. Genome Res 18:1545–1553

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Bacolla A, Wells RD (2009) Non-B DNA conformations as determinants of mutagenesis and human disease. Mol Carcinog 48:273–285

    Article  CAS  PubMed  Google Scholar 

  15. La Spada AR, Taylor JP (2010) Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat Rev Genet 11:247–258

    Article  PubMed  Google Scholar 

  16. Orr HT, Zoghbi HY (2007) Trinucleotide repeat disorders. Annu Rev Neurosci 30:575–621

    Article  CAS  PubMed  Google Scholar 

  17. Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6:743–755

    Article  CAS  PubMed  Google Scholar 

  18. Li LB, Yu Z, Teng X, Bonini NM (2008) RNA toxicity is a component of ataxin-3 degeneration in Drosophila. Nature 453:1107–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Riley BE, Orr HT (2006) Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle. Genes Dev 20:2183–2192

    Article  CAS  PubMed  Google Scholar 

  20. Ditch S, Sammarco MC, Banerjee A, Grabczyk E (2009) Progressive GAA.TTC repeat expansion in human cell lines. PLoS Genet 5:e1000704

    Article  PubMed Central  PubMed  Google Scholar 

  21. Jung J, Bonini N (2007) CREB-binding protein modulates repeat instability in a Drosophila model for polyQ disease. Science 315:1857–1859

    Article  CAS  PubMed  Google Scholar 

  22. Lin Y, Dion V, Wilson JH (2006) Transcription promotes contraction of CAG repeat tracts in human cells. Nat Struct Mol Biol 13:179–180

    Article  CAS  PubMed  Google Scholar 

  23. Hanawalt PC, Spivak G (2008) Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol 9:958–970

    Article  CAS  PubMed  Google Scholar 

  24. Kim N, Jinks-Robertson S (2012) Transcription as a source of genome instability. Nat Rev Genet 13:204–214

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Lin Y, Wilson JH (2007) Transcription-induced CAG repeat contraction in human cells is mediated in part by transcription-coupled nucleotide excision repair. Mol Cell Biol 27:6209–6217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Dion V, Lin Y, Hubert L Jr, Waterland RA, Wilson JH (2008) Dnmt1 deficiency promotes CAG repeat expansion in the mouse germline. Hum Mol Genet 17:1306–1317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Hubert L Jr, Lin Y, Dion V, Wilson JH (2011) Topoisomerase 1 and single-strand break repair modulate transcription-induced CAG repeat contraction in human cells. Mol Cell Biol 31:3105–3112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Lin Y, Dent SY, Wilson JH, Wells RD, Napierala M (2010) R loops stimulate genetic instability of CTG.CAG repeats. Proc Natl Acad Sci USA 107:692–697

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Lin Y, Wilson JH (2009) Diverse effects of individual mismatch repair components on transcription-induced CAG repeat instability in human cells. DNA Repair (Amst) 8:878–885

    Article  CAS  Google Scholar 

  30. Mittelman D, Sykoudis K, Hersh M, Lin Y, Wilson JH (2010) Hsp90 modulates CAG repeat instability in human cells. Cell Stress Chaperones 15:753–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lin Y, Leng M, Wan M, Wilson JH (2010) Convergent transcription through a long CAG tract destabilizes repeats and induces apoptosis. Mol Cell Biol 30:4435–4451

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Nakamori M, Pearson CE, Thornton CA (2011) Bidirectional transcription stimulates expansion and contraction of expanded (CTG)*(CAG) repeats. Hum Mol Genet 20:580–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745

    Article  CAS  PubMed  Google Scholar 

  34. Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 40:179–204

  35. Lin Y, Wilson JH (2011) Transcription-induced DNA toxicity at trinucleotide repeats: double bubble is trouble. Cell Cycle 10:611–618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M et al (2005) Antisense transcription in the mammalian transcriptome. Science 309:1564–1566

    Article  PubMed  Google Scholar 

  37. Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS et al (2006) Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 38:758–769

    Article  CAS  PubMed  Google Scholar 

  38. Ladd PD, Smith LE, Rabaia NA, Moore JM, Georges SA, Hansen RS et al (2007) An antisense transcript spanning the CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in full mutation individuals. Hum Mol Genet 16:3174–3187

    Article  CAS  PubMed  Google Scholar 

  39. Cho DH, Thienes CP, Mahoney SE, Analau E, Filippova GN, Tapscott SJ (2005) Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol Cell 20:483–489

    Article  CAS  PubMed  Google Scholar 

  40. Chen WL, Lin JW, Huang HJ, Wang SM, Su MT, Lee-Chen GJ et al (2008) SCA8 mRNA expression suggests an antisense regulation of KLHL1 and correlates to SCA8 pathology. Brain Res 1233:176–184

    Article  CAS  PubMed  Google Scholar 

  41. He Y, Vogelstein B, Velculescu VE, Papadopoulos N, Kinzler KW (2008) The antisense transcriptomes of human cells. Science 322:1855–1857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Wilburn B, Rudnicki DD, Zhao J, Weitz TM, Cheng Y, Gu X, et al. An antisense CAG repeat transcript at JPH3 locus mediates expanded polyglutamine protein toxicity in Huntington’s disease-like 2 mice. Neuron 70:427–440

  43. Chung DW, Rudnicki DD, Yu L, Margolis RL. A natural antisense transcript at the Huntington’s disease repeat locus regulates HTT expression. Hum Mol Genet

  44. Sopher BL, Ladd PD, Pineda VV, Libby RT, Sunkin SM, Hurley JB, et al. CTCF Regulates ataxin-7 expression through promotion of a convergently transcribed, antisense noncoding RNA. Neuron 70:1071–1084

  45. Hubert L Jr, Lin Y, Dion V, Wilson JH (2011) Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1. Hum Mol Genet 20:4822–4830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Owen BA, Yang Z, Lai M, Gajek M, Badger JD 2nd, Hayes JJ et al (2005) (CAG)(n)-hairpin DNA binds to Msh2-Msh3 and changes properties of mismatch recognition. Nat Struct Mol Biol 12:663–670

    Article  CAS  PubMed  Google Scholar 

  47. Lin Y, Wilson JH (2012) Nucleotide excision repair, mismatch repair, and R-loops modulate convergent transcription-induced cell death and repeat instability. PLoS ONE 7:e46807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ljungman M (2005) Activation of DNA damage signaling. Mutat Res 577:203–216

    Article  CAS  PubMed  Google Scholar 

  49. Ljungman M (2007) The transcription stress response. Cell Cycle 6:2252–2257

    Article  CAS  PubMed  Google Scholar 

  50. Ljungman M, Zhang F (1996) Blockage of RNA polymerase as a possible trigger for u.v. light-induced apoptosis. Oncogene 13:823–831

    CAS  PubMed  Google Scholar 

  51. Belotserkovskii BP, Liu R, Tornaletti S, Krasilnikova MM, Mirkin SM, Hanawalt PC. Mechanisms and implications of transcription blockage by guanine-rich DNA sequences. Proc Natl Acad Sci USA 107:12816–12821

  52. Belotserkovskii BP, De Silva E, Tornaletti S, Wang G, Vasquez KM, Hanawalt PC (2007) A triplex-forming sequence from the human c-MYC promoter interferes with DNA transcription. J Biol Chem 282:32433–32441

    Article  CAS  PubMed  Google Scholar 

  53. Parsons MA, Sinden RR, Izban MG (1998) Transcriptional properties of RNA polymerase II within triplet repeat-containing DNA from the human myotonic dystrophy and fragile X loci. J Biol Chem 273:26998–27008

    Article  CAS  PubMed  Google Scholar 

  54. Salinas-Rios V, Belotserkovskii BP, Hanawalt PC. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res

  55. Lawlor KT, O’Keefe LV, Samaraweera SE, van Eyk CL, McLeod CJ, Maloney CA, et al (2011) Double-stranded RNA is pathogenic in Drosophila models of expanded repeat neurodegenerative diseases. Hum Mol Genet

Download references

Acknowledgments

We thank members of the Wilson lab for helpful discussions. This work was supported by a grant from the NIH (GM38219) to J.H.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfu Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, W.Y., Lin, Y. & Wilson, J.H. Convergent transcription through microsatellite repeat tracts induces cell death. Mol Biol Rep 41, 5627–5634 (2014). https://doi.org/10.1007/s11033-014-3432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3432-y

Keywords

Navigation