Skip to main content

Advertisement

Log in

An insight into the genes involved in secoiridoid biosynthesis in Gentiana macrophylla by RNA-seq

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The dried root of Gentiana macrophylla is a well-known traditional Chinese herbal medicine for treating jaundice, hepatitis, and stomachic and choleretic ailments. However, natural sources are now in short supply. A lack of information about its genetic background has been a great hindrance to producing its active constituents via genetic engineering. We performed RNA-seq to obtain 42,918 unigenes (average length = 667 bp) in its transcriptome. Of these, 32,141 (74.89 %) were annotated and 2,339 unigenes were assigned to secondary-metabolite pathways. In all, 114 putative unigenes involved in secoiridoid biosynthesis were identified in our transcriptome library. A Blast X search against the Arabidopsis gene regulatory information server showed that 4,413 unigenes are homologous to transcription factor genes from Arabidopsis. Organ-specific genes and candidate gene expression profiles were also investigated with digital gene expression technology. Quantitative PCR was used to verify the expression patterns of several novel transcripts involved in secoiridoid biosynthesis. Our results not only enrich the gene resource but will also benefit research into the molecular genetics and functional genomics of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jiang Z, Liu H, Liu X et al (2010) Chemical constituents of Gentiana macrophylla Pall. Nat Prod Res 24(14):1365

    Article  CAS  PubMed  Google Scholar 

  2. Ghisalberti E (1998) Biological and pharmacological activity of naturally occurring iridoids and secoiridoids. Phytomedicine 5(2):147–163

    Article  CAS  PubMed  Google Scholar 

  3. Yin H, Zhao Q, Sun F et al (2009) Gentiopicrin-producing endophytic fungus isolated from Gentiana macrophylla. Phytomedicine 16(8):793

    Article  CAS  PubMed  Google Scholar 

  4. Yu F, Yu F, Li R et al (2004) Inhibitory effects of the Gentiana macrophylla (Gentianaceae) extract on rheumatoid arthritis of rats. J Ethnopharmacol 95(1):77–81

    Article  PubMed  Google Scholar 

  5. Chang-Liao WL, Chien CF, Lin LC et al (2012) Isolation of gentiopicroside from Gentianae Radix and its pharmacokinetics on liver ischemia/reperfusion rats. J Ethnopharmacol 141(2):668–673

    Article  CAS  PubMed  Google Scholar 

  6. Cao J, Liu X, Hao J et al (2005) Tissue culture and plantlet regeneration of Gentiana macrophylla. Acta Bot Bor-Occid Sin 25(6):1101–1106

    CAS  Google Scholar 

  7. Qiang Z, Xiaolong L, Ziyan Z et al (2008) Advances in research of medicinal plant Gentiana macrophylla. J Agric Sci 3:017

    Google Scholar 

  8. Oudin A, Courtois M, Rideau M et al (2007) The iridoid pathway in Catharanthus roseus alkaloid biosynthesis. Phytochem Rev 6(2):259–276

    Article  CAS  Google Scholar 

  9. Desai PN, Shrivastava N, Padh H (2010) Production of heterologous proteins in plants: strategies for optimal expression. Biotech Adv 28(4):427–435

    Article  CAS  Google Scholar 

  10. De Luca V (2011) Monoterpenoid indole alkaloid biosynthesis. In: Ashihara H, Crozier A, Komamine A (eds) Plant metabolism and biotechnology, pp 263–292

  11. Laule O, Fürholz A, Chang HS et al (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100(11):6866–6871

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6(2–3):277–305

    Article  CAS  Google Scholar 

  13. Tai HM, Huang MH, Yang CC (2003) Formal total synthesis of (±)-dimethyl secologanoside. J Chin Chem Soc 50:441–444

    Article  CAS  Google Scholar 

  14. Hua WP, Song J, Li CQ et al (2012) Molecular cloning and characterization of the promoter of SmGGPPs and its expression pattern in Salvia miltiorrhiza. Mol Biol Rep 39(5):5775–5783

    Article  CAS  PubMed  Google Scholar 

  15. Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotech 29(7):644–652

    Article  CAS  Google Scholar 

  16. Wang Y, Hua WP, Wang J et al (2013) Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Mol Genet Genom 288 (3–4):131–139

    Google Scholar 

  17. Hua WP, Zhang Y, Song J et al (2011) De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98(4):272–279

    Article  CAS  Google Scholar 

  18. Conesa A, Gotz S, Garcia-Gomez JM et al (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  CAS  PubMed  Google Scholar 

  19. Ye J, Fang L, Zheng H et al. (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34 (Web Server issue):W293-297

  20. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Palaniswamy SK, James S, Sun H et al (2006) AGRIS and AtRegNet: a platform to link cis-regulatory elements and transcription factors into regulatory networks. Plant Physiol 140(3):818–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Morrissy AS, Morin RD, Delaney A et al (2009) Next-generation tag sequencing for cancer gene expression profiling. Genome Res 19(10):1825–1835

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Vandesompele J, de Preter K, Pattyn F et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3 (7):RESEARCH0034

    Google Scholar 

  24. He M, Wang Y, Hua WP et al (2012) De novo sequencing of Hypericum perforatum transcriptome to identify potential genes involved in the biosynthesis of active metabolites. PLoS One 7(7):e42081

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Khatri P, Sirota M, Butte AJ (2012) Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput Biol 8(2):e1002375

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Davuluri RV, Sun H, Palaniswamy SK et al (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinform 4:25

    Article  Google Scholar 

  27. Ma L, Nie L, Liu J et al (2012) An RNA-seq-based gene expression profiling of radiation-induced tumorigenic mammary epithelial cells. Genom Proteom Bioinform 10(6):326–335

    Article  CAS  Google Scholar 

  28. van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289(5477):295–297

    Article  PubMed  Google Scholar 

  29. Sutter V, Vanderhaeghen R, Tilleman S et al (2005) Exploration of jasmonate signalling via automated and standardized transient expression assays in tobacco cells. Plant J 44(6):1065–1076

    Article  PubMed  Google Scholar 

  30. Zhang H, Hedhili S, Montiel G et al (2011) The basic helix-loop-helix transcription factor CrMYC2 controls the jasmonate-responsive expression of the ORCA genes that regulate alkaloid biosynthesis in Catharanthus roseus. Plant J 67(1):61–71

    Article  CAS  PubMed  Google Scholar 

  31. Shoji T, Hashimoto T (2011) Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant Cell Physiol 52(6):1117–1130

    Article  CAS  PubMed  Google Scholar 

  32. Suttipanta N, Pattanaik S, Kulshrestha M et al (2011) The transcription factor CrWRKY1 positively regulates the terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol 157(4):2081–2093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Hedhili S, Courdavault V, Giglioli-Guivarc’h N et al (2007) Regulation of the terpene moiety biosynthesis of Catharanthus roseus terpene indole alkaloids. Phytochem Rev 6(2–3):341–351

    Article  CAS  Google Scholar 

  34. Wang CT, Liu H, Gao XS et al (2010) Overexpression of G10H and ORCA3 in the hairy roots of Catharanthus roseus improves catharanthine production. Plant Cell Rep 29(8):887–894

    Article  CAS  PubMed  Google Scholar 

  35. Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6(5):219–226

    Article  CAS  PubMed  Google Scholar 

  36. Zheng X, Deng W, Luo K et al (2007) The cauliflower mosaic virus (CaMV) 35S promoter sequence alters the level and patterns of activity of adjacent tissue- and organ-specific gene promoters. Plant Cell Rep 26(8):1195–1203

    Article  CAS  PubMed  Google Scholar 

  37. Davies PJ (2010) The plant hormones: their nature, occurrence, and functions. In: Plant hormones. Springer, New York, pp 1–15

  38. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333

    Article  CAS  PubMed  Google Scholar 

  39. Cao XY, Wang ZJ, Wang ZZ (2012) Comparative analysis of contents of four iridoid glucosides in different organs of four species of Gentiana L. J Plant Resour Environ 21(1):58–63

    CAS  Google Scholar 

Download references

Acknowledgments

This work benefited from financial support from the National Natural Science Foundation of China (Grant No. 31270338, 31300256), the postdoctoral fund of Shaanxi Province, the Natural Science Foundation of Shaanxi Province, China (Grant No. 2012JQ4013), the Science and Technology Project of Xi’an (Grant No. NC1206-5) and the Fundamental Research Funds for the Central Universities (GK201302043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhezhi Wang.

Additional information

Wenping Hua and Peng Zheng have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental File 1. Size distribution of Gentiana macrophylla unigenes. (TIFF 1057 kb)

11033_2014_3352_MOESM2_ESM.doc

Supplemental File 2. Twenty most-represented pathways in the Gentiana macrophylla transcriptome. Supplemental File 3. Output statistics from DGE sequencing of different organs from Gentiana macrophylla. (DOC 71 kb)

Supplemental File 4. Top 50 unigenes expressed in different organs of Gentiana macrophylla. (XLS 74 kb)

11033_2014_3352_MOESM4_ESM.xls

Supplemental File 5. Expression patterns for unigenes derived from four organ libraries for Gentiana macrophylla. (XLS 5718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, W., Zheng, P., He, Y. et al. An insight into the genes involved in secoiridoid biosynthesis in Gentiana macrophylla by RNA-seq. Mol Biol Rep 41, 4817–4825 (2014). https://doi.org/10.1007/s11033-014-3352-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3352-x

Keywords

Navigation