Skip to main content

Advertisement

Log in

Cloning, characterization and in vitro and in planta expression of a glucanase inhibitor protein (GIP) of Phytophthora cinnamomi

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oomycetes from the genus Phytophthora are fungus-like plant pathogens that are devastating for agriculture and natural ecosystems. They are able to secrete a glucanase inhibitor protein (GIP) that inhibits the activity of endoglucanases (EGases) involved in defense responses against infection. One of the most widely distributed and aggressive Phytophthora species, with more than 1,000 host plants is P. cinnamomi. In this work we report the sequencing and characterization of a class of GIPs secreted by Phytophthora cinnamomi. The gip gene from P. cinnamomi has a 937 bp ORF encoding a putative peptide of 312 deduced amino acids. The expression of this gene was studied during growth in different carbon sources (glucose, cellulose and sawdust), by RT-qPCR and its level of expression was evaluated at five time points. The highest expression of gip gene occurred in sawdust at 8 h of induction. In vivo infection of C. sativa revealed an increase in gip expression from 12 to 24 h. At 36 h its expression decreased suggesting that a compensatory mechanism must occur in plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. American Phytopathological Society Press, St. Paul

    Google Scholar 

  2. Knogge W (1998) Fungal pathogenicity. Curr Opin Plant Biol 1(4):324–328

    Article  PubMed  CAS  Google Scholar 

  3. Hardham AR (2005) Phytophthora cinnamomi. Mol Plant Pathol 6(6):589–604

    Article  PubMed  CAS  Google Scholar 

  4. King M, Reeve W, Van der Hoek MB, Williams N, McComb J, O’Brien PA, Hardy GE (2010) Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Mol Genet Genomics 284(6):425–435

    Article  PubMed  CAS  Google Scholar 

  5. Birch PR, Rehmany AP, Pritchard L, Kamoun S, Beynon JL (2006) Trafficking arms: oomycete effectors enter host plant cells. Trends Microbiol 14(1):8–11

    Article  PubMed  CAS  Google Scholar 

  6. Ellis J, Catanzariti AM, Dodds P (2006) The problem of how fungal and oomycete avirulence proteins enter plant cells. Trends Plant Sci 11(2):61–63

    Article  PubMed  CAS  Google Scholar 

  7. Kamoun S (2007) Groovy times: filamentous pathogen effectors revealed. Curr Opin Plant Biol 10(4):358–365

    Article  PubMed  CAS  Google Scholar 

  8. Schornack S, Huitema E, Cano LM, Bozkurt TO, Oliva R, Van Damme M, Schwizer S, Raffaele S, Chaparro-Garcia A, Farrer R, Segretin ME, Bos J, Haas BJ, Zody MC, Nusbaum C, Win J, Thines M, Kamoun S (2009) Ten things to know about oomycete effectors. Mol Plant Pathol 10(6):795–803

    Article  PubMed  CAS  Google Scholar 

  9. Kamoun S (2003) Molecular genetics of pathogenic oomycetes. Eukaryot Cell 2(2):191–199

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Attard A, Gourgues M, Galiana E, Panabieres F, Ponchet M, Keller H (2008) Strategies of attack and defense in plant-oomycete interactions, accentuated for Phytophthora parasitica Dastur (syn. P. Nicotianae Breda de Haan). J Plant Physiol 165(1):83–94

    Article  PubMed  CAS  Google Scholar 

  11. Day B, Graham T (2007) The plant host pathogen interface: cell wall and membrane dynamics of pathogen-induced responses. Ann N Y Acad Sci 1113:123–134

    Article  PubMed  CAS  Google Scholar 

  12. Kamoun S, Huitema E, Vleeshouwers VG (1999) Resistance to oomycetes: a general role for the hypersensitive response? Trends Plant Sci 4(5):196–200

    Article  PubMed  Google Scholar 

  13. Valueva TA, Mosolov VV (2004) Role of inhibitors of proteolytic enzymes in plant defense against phytopathogenic microorganisms. Biochemistry (Mosc) 69(11):1305–1309

    Article  CAS  Google Scholar 

  14. Rose JK, Ham KS, Darvill AG, Albersheim P (2002) Molecular cloning and characterization of glucanase inhibitor proteins: coevolution of a counterdefense mechanism by plant pathogens. Plant Cell 14(6):1329–1345

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1(1):17–20

    Article  CAS  Google Scholar 

  16. Michiels MT, Van den Ende W, Van Laere A (2003) Chromosomal walking of flanking regions from short known sequences in GC-rich plant genomic DNA. Plant Mol Biol Rep 21:295–302

    Article  CAS  Google Scholar 

  17. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166(4):557–580

    Article  PubMed  CAS  Google Scholar 

  18. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  19. Damasceno CM, Bishop JG, Ripoll DR, Win J, Kamoun S, Rose JK (2008) Structure of the glucanase inhibitor protein (GIP) family from Phytophthora species suggests coevolution with plant endo-beta-1,3-glucanases. Mol Plant Microbe Interact 21(6):820–830

    Article  PubMed  CAS  Google Scholar 

  20. York WS, Qin Q, Rose JK (2004) Proteinaceous inhibitors of endo-beta-glucanases. Biochim Biophys Acta 1696(2):223–233

    Article  PubMed  CAS  Google Scholar 

  21. Liu B, Xue X, Cui S, Zhang X, Han Q, Zhu L, Liang X, Wang X, Huang L, Chen X, Kang Z (2010) Cloning and characterization of a wheat beta-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f. sp. tritici. Mol Biol Rep 37(2):1045–1052

    Article  PubMed  CAS  Google Scholar 

  22. Murfett J, Wang XJ, Hagen G, Guilfoyle TJ (2001) Identification of Arabidopsis histone deacetylase HDA6 mutants that affect transgene expression. Plant Cell 13(5):1047–1061

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Horta M, Sousa N, Coelho AC, Neves D, Cravador A (2009) In vitro and in vivo quantification of elicitin expression in Phytophthora cinnamomi. Physiol Mol Plant P 73:48–57

    Article  CAS  Google Scholar 

  24. Staskawicz BJ (2001) Genetics of plant-pathogen interactions specifying plant disease resistance. Plant Physiol 125(1):73–76

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Shiraishi T, Yamada T, Ichinose Y, Kiba A, Toyoda K (1997) The role of suppressors in determining host–parasite specificities in plant cells. Int Rev Cytol 172:55–93

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the EC - III Framework Programme for Research and Technological Development, co-financed by the European Social Fund (ESF) and by national funding from the Portuguese Ministério da Ciência e do Ensino Superior (MCES) (PTDC/AGR-AAM/67628/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Altino Choupina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, I.M., Martins, F., Belo, H. et al. Cloning, characterization and in vitro and in planta expression of a glucanase inhibitor protein (GIP) of Phytophthora cinnamomi . Mol Biol Rep 41, 2453–2462 (2014). https://doi.org/10.1007/s11033-014-3101-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3101-1

Keywords

Navigation