Skip to main content
Log in

Nanofiber-based polyethersulfone scaffold and efficient differentiation of human induced pluripotent stem cells into osteoblastic lineage

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Human induced pluripotent stem cells (iPSCs) have been shown to have promising potential for regenerative medicine and tissue engineering applications. In the present study, osteogenic differentiation of human iPSCs was evaluated on polyethersulfone (PES) nanofibrous scaffold. According to the results, higher significant expressions of common osteogenic-related genes such as runx2, collagen type I, osteocalcin and osteonectin was observed in PES seeded human iPSCs compared with control. Alizarin red staining and alkaline phosphatase activity of differentiated iPSCs demonstrated significant osteoblastic differentiation potential of these cells. In this study biocompatibility of PES nanofibrous scaffold confirmed by flattened and spreading morphology of iPSCs under osteoblastic differentiation inductive culture. Taking together, nanofiber-based PES scaffold seeded iPSCs showed the highest capacity for differentiation into osteoblasts-like cells. These cells and PES scaffold were demonstrated to have great efficiency for treatment of bone damages and lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Carvalho LRP, Breyner NM, Hell RCR, Valério P, Novikoff S, Goes M (2012) Healing pattern in calvarial bone defects following bone regeneration in rats guided by chitosan scaffold and adipose tissue-derived mesenchymal stem cells. Open Tissue Eng Regen Med J 5:25–34. doi:10.1002/jbm.a.34214

    Article  CAS  Google Scholar 

  2. Zaidi N, Nixon AJ (2007) Stem cell therapy in bone repair and regeneration. Ann NY Acad Sci 1117:62–72. doi:10.1038/nrrheum.2009.104

    Article  PubMed  CAS  Google Scholar 

  3. Seyedjafari E, Soleimani M, Ghaemi N, Shabani I (2010) Nanohydroxyapatite-coated electrospun poly(l-lactide) nanofibers enhance osteogenic differentiation of stem cells and induce ectopic bone formation. Biomacromolecules. doi:10.1021/bm1009238

    PubMed  Google Scholar 

  4. Sila-Asna M, Bunyaratvej A, Maeda S, Kitaguchi H, Bunyaratavej N (2007) Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell. Kobe J Med Sci 53(1–2):25–35

    PubMed  CAS  Google Scholar 

  5. Ogura N, Kawada M, Chang WJ, Zhang Q, Lee SY, Kondoh T, Abiko Y (2004) Differentiation of the human mesenchymal stem cells derived from bone marrow and enhancement of cell attachment by fibronectin. J Oral Sci 46(4):207–213

    Article  PubMed  CAS  Google Scholar 

  6. zur Nieden NI, Kempka G, Ahr HJ (2003) In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation 71(1):18–27. doi:10.1046/j.1432-0436.2003.700602.x

    Article  PubMed  CAS  Google Scholar 

  7. Jung KW (2009) Perspectives on human stem cell research. J Cell Physiol 220(3):535–537. doi:10.1002/jcp.21786

    Article  PubMed  CAS  Google Scholar 

  8. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676. doi:10.1016/j.cell.2006.07.024

    Article  PubMed  CAS  Google Scholar 

  9. Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1(1):39–49. doi:10.1016/j.stem.2007.05.012

    Article  PubMed  CAS  Google Scholar 

  10. Goldthwaite CA (2010) The promise of induced pluripotent stem cells (iPSCs) regenerative medicine and induced pluripotent stem cells chapter 10:97-104

  11. Nakatsuji N, Nakajima F, Tokunaga K (2008) HLA-haplotype banking and iPS cells. Nat Biotechnol 26(7):739–740. doi:10.1038/nbt0708-739

    Article  PubMed  CAS  Google Scholar 

  12. Okamoto H, Matsumi Y, Hoshikawa Y, Takubo K, Ryoke K, Shiota G (2012) Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells. PLoS One. doi:10.1371/journal.pone.0043800

    Google Scholar 

  13. Bilousova G, du Jun H, King KB, De Langhe S, Chick WS, Torchia EC, Chow KS, Klemm DJ, Roop DR, Majka SM (2011) Osteoblasts derived from induced pluripotent stem cells form calcified structures in scaffolds both in vitro and in vivo. Stem Cells 29(2):206–216. doi:10.1002/stem.566

    Article  PubMed  CAS  Google Scholar 

  14. Seyedjafari E, Soleimani M, Ghaemi N, Sarbolouki MN (2011) Enhanced osteogenic differentiation of cord blood-derived unrestricted somatic stem cells on electrospun nanofibers. J Mater Sci Mater Med 22(1):165–174. doi:10.1007/s10856-010-4174-6

    Article  PubMed  CAS  Google Scholar 

  15. Shabani I, Haddadi-Asl V, Seyedjafari E, Babaeijandaghi F, Soleimani M (2009) Improved infiltration of stem cells on electrospun nanofibers. Biochem Biophys Res Commun 382(1):129–133. doi:10.1016/j.bbrc.2009.02.150

    Article  PubMed  CAS  Google Scholar 

  16. Sun C, Jin X, Holzwarth JM, Liu X, Hu J, Gupte MJ, Zhao Y, Ma PX (2012) Development of channeled nanofibrous scaffolds for oriented tissue engineering. Macromol Biosci 12(6):761–769. doi:10.1002/mabi.201200004

    Article  PubMed  CAS  Google Scholar 

  17. Frohbergh ME, Katsman A, Botta GP, Lazarovici P, Schauer CL, Wegst UG, Lelkes PI (2012) Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33(36):9167–9178. doi:10.1016/j.biomaterials.2012.09.009

    Article  PubMed  CAS  Google Scholar 

  18. Martins A, Pinho ED, Correlo VM, Faria S, Marques AP, Reis RL, Neves NM (2010) Biodegradable nanofibers-reinforced microfibrous composite scaffolds for bone tissue engineering. Tissue Eng Part A 16(12):3599–3609. doi:10.1089/ten.TEA.2009.0779

    Article  PubMed  CAS  Google Scholar 

  19. Shin SH, Purevdorj O, Castano O, Planell JA, Kim HW (2012) A short review: Recent advances in electrospinning for bone tissue regeneration. J Tissue Eng. doi:10.1177/2041731412443530

    PubMed  Google Scholar 

  20. Birmingham E, Niebur GL, McHugh PE, Shaw G, Barry FP, McNamara LM (2012) Osteogenic differentiation of mesenchymal stem cells is regulated by osteocyte and osteoblast cells in a simplified bone niche. Eur Cell Mater 23:13–27

    PubMed  CAS  Google Scholar 

  21. Beck GR Jr, Zerler B, Moran E (2000) Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci U S A 97(15):8352–8357. doi:10.1073/pnas.140021997

    Article  PubMed  CAS  Google Scholar 

  22. Bab IA, Sela JJ (2012) Cellular and molecular aspects of bone repair. Principles of bone regeneration springer science + business media, New York, pp 11–41. doi:10.1007/s00277-008-0595-4

    Google Scholar 

  23. Lamberts SWJ (2007) The essential role of glucocorticoids for proper human osteoblast differentiation and matrix mineralization. Human Osteoblast differentiation and bone formation: growth factors, hormones and regulatory networks chapter 2., pp 27–40. doi:10.1111/j.1365-2516.2008.01696.x

    Google Scholar 

  24. Mikuni-Takagaki Y, Kakai Y, Satoyoshi M, Kawano E, Suzuki Y, Kawase T, Saito S (1995) Matrix mineralization and the differentiation of osteocyte-like cells in culture. J Bone Miner Res 10(2):231–242. doi:10.1002/jbmr.5650100209

    Article  PubMed  CAS  Google Scholar 

  25. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754

    Article  PubMed  CAS  Google Scholar 

  26. Lichtler A, Stover ML, Angilly J, Kream B, Rowe DW (1989) Isolation and characterization of the rat alpha 1(I) collagen promoter. Regulation by 1,25-dihydroxyvitamin. D. J Biol Chemosphere 264(6):3072–3077

    CAS  Google Scholar 

  27. Richardson JA, Amantea CM, Kianmahd B, Tetradis S, Lieberman JR, Hahn TJ, Parhami F (2007) Oxysterol-induced osteoblastic differentiation of pluripotent mesenchymal cells is mediated through a PKC- and PKA-dependent pathway. J Cell Biochem 100(5):1131–1145. doi:10.1002/jcb.21112

    Article  PubMed  CAS  Google Scholar 

  28. Price PA, Baukol SA (1980) 1,25-Dihydroxyvitamin D3 increases synthesis of the vitamin K-dependent bone protein by osteosarcoma cells. J Biol Chem 255(24):11660–11663

    PubMed  CAS  Google Scholar 

  29. Termine JD, Robey PG (1996) Bone matrix proteins and the mineralization process. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism. Lippincott-Raven, Philadelphia, pp 24–28

    Google Scholar 

Download references

Acknowledgments

This study was supported by Stem Cell Technology Research Center, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Soleimani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardeshirylajimi, A., Hosseinkhani, S., Parivar, K. et al. Nanofiber-based polyethersulfone scaffold and efficient differentiation of human induced pluripotent stem cells into osteoblastic lineage. Mol Biol Rep 40, 4287–4294 (2013). https://doi.org/10.1007/s11033-013-2515-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2515-5

Keywords

Navigation