Skip to main content

Advertisement

Log in

Cultivar-specific kinetics of chitinase induction in soybean roots during exposure to arsenic

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The kinetics of defense responses was studied in soybean exposed to ecologically relevant concentrations of arsenic for 96 h. In the roots of two soybean cultivars with contrasting tolerance to this metalloid there were observed differences in basal levels of membrane lipid peroxidation as well as a significantly different course of peroxidation upon exposure to As. The different course of stress was reflected in the accumulation of defense components. The responses of individual chitinase isoforms were studied since these enzymes had previously been shown to be stable components of defense against metals. The kinetics and magnitude of accumulation of the three isoforms during exposure to As significantly differed within as well as between the studied cultivars. Furthermore, accumulation of these isoforms appeared to be related to oxidative status in the root tissue. The timing of induced responses is likely to be important for efficient defense against metal(oid) pollution in environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Metwally A, Safronova VI, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  2. Dietz KJ, Baier M, Kramer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants. From molecules to ecosystems. Springer, Berlin, pp 73–79

    Google Scholar 

  3. Hartley-Whitaker J, Ainsworth G, Meharg AA (2001) Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant, Cell Environ 24:713–722

    Article  CAS  Google Scholar 

  4. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  5. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  PubMed  Google Scholar 

  6. Le Faucheur S, Behra R, Sigg L (2005) Phytochelatin induction, cadmium accumulation, and algal sensitivity to free cadmium ion in Scenedesmus vacuolatus. Environ Toxicol Chem 24:1731–1737

    Article  PubMed  Google Scholar 

  7. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  8. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  PubMed  CAS  Google Scholar 

  9. Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell 14:2837–2847

    Article  PubMed  CAS  Google Scholar 

  10. Piršelová B, Matušíková I (2011) Plant defense against heavy metals: the involvement of pathogenesis—related (PR) proteins. In: Awaad AS, Kaushik G, Govil JN (eds) Mechanism and action of phytoconstituents. Recent progress in medicinal plant Vol. 31. Studium Press LLC, New York, pp 179–205

    Google Scholar 

  11. Bekesiova B, Hraska S, Libantova J, Moravcikova J, Matusikova I (2008) Heavy-metal stress induced accumulation of chitinase isoforms in plants. Mol Biol Rep 35:579–588

    Article  PubMed  CAS  Google Scholar 

  12. Corrales I, Poschenrieder C, Barcelo J (2008) Boron-induced amelioration of aluminium toxicity in a monocot and a dicot species. J Plant Physiol 165:504–513

    Article  PubMed  CAS  Google Scholar 

  13. Dana MM, Pintor-Toro JA, Cubero B (2006) Transgenic tobacco plants overexpressing chitinases of fungal origin show enhanced resistance to biotic and abiotic stress agents. Plant Physiol 142:722–730

    Article  Google Scholar 

  14. Yokoyama R, Nishitani K (2004) Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45:1111–1121

    Article  PubMed  CAS  Google Scholar 

  15. Kasprzewska A (2003) Plant chitinases—regulation and function. Cell Mol Biol Lett 8:809–824

    PubMed  CAS  Google Scholar 

  16. Grover A (2012) Plant chitinases: genetic diversity and physiological roles. Crit Rev Plant Sci 31:57–73

    Article  CAS  Google Scholar 

  17. Fossdal CG, Hietala AM, Kvaalen H, Solheim H (2006) Changes in host chitinase isoforms in relation to wounding and colonization by Heterobasidion annosum: early and strong defense response in 33-year-old resistant Norway spruce clone. Tree Physiol 26:169–177

    Article  PubMed  CAS  Google Scholar 

  18. Tamari Y, Takada A, Tsuji H, Kusaka Y (1988) Determination of ppb level of arsenic (V) based on fluorescence quenching of thorium-morin chelate. Anal Sci 4:277–280

    Article  CAS  Google Scholar 

  19. Tamas L, Dudikova J, Durcekova K, Halugkova Lu, Huttova J, Mistrik I, Olle M (2008) Alterations of the gene expression, lipid peroxidation, proline and thiol content along the barley root exposed to cadmium. J Plant Physiol 165:1193–1203

    Article  PubMed  CAS  Google Scholar 

  20. Karabal E, Yucel M, Oktem HA (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933

    Article  CAS  Google Scholar 

  21. Thordal-Christensen H, Zhang Z, Wie Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. The Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  22. Pompella A, Maellaro E, Casini AF, Comporti M (1987) Histochemical detection of lipid peroxidation in the liver of bromobenzene-poisoned mice. Am J Pathol 129:295–301

    PubMed  CAS  Google Scholar 

  23. Sanchez E, Lopez-Lefebre LR, Garcia PC, Rivero RM, Ruiz JM, Romero L (2001) Proline metabolism in response to highest nitrogen dosages in green bean plants (Phaseolus vulgaris L. cv. Strike). J Plant Physiol 158:593–598

    Article  CAS  Google Scholar 

  24. Hurkman WJ, Tanaka CK (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol 81:802–806

    Article  PubMed  CAS  Google Scholar 

  25. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  27. Trudel J, Asselin A (1989) Detection of chitinase activity after polyacrylamide gel electrophoresis. Anal Biochem 178:362–366

    Article  PubMed  CAS  Google Scholar 

  28. Pan SQ, Ye XS, Kuc J (1991) A technique for detection of chitinase, beta-1,3-glucanase, and protein- patterns after a single separation using polyacrylamide-gel electrophoresis or isoelectrofocusing. Phytopathology 81:970–974

    Article  CAS  Google Scholar 

  29. Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  30. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  31. Meharg AA (2003) Variation in arsenic accumulation—hyperaccumulation in ferns and their allies. New Phytol 157:25–31

    Article  CAS  Google Scholar 

  32. Piršelová B, Kuna R, Libantová J, Moravčíková J, Matušíková I (2011) Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep 38:3437–3446

    Article  PubMed  Google Scholar 

  33. Ding D, Li W, Song G, Qi H, Liu J, Tang J (2011) Identification of QTLs for arsenic accumulation in maize (Zea mays L.) using a RIL population. PLoS ONE 6:e25646

    Article  PubMed  CAS  Google Scholar 

  34. Norton GJ, Duan G, Dasgupta T, Islam MR, Lei M, Zhu Y, Deacon CM, Moran AC, Islam S, Zhao F-J, Stroud JL, McGrath SP, Feldmann J, Price AH, Meharg AA (2009) Environmental and genetic control of arsenic accumulation and speciation in rice grain: comparing a range of common cultivars grown in contaminated sites across Bangladesh, China, and India. Environ Sci Technol 43:8381–8386

    Article  PubMed  CAS  Google Scholar 

  35. van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    Article  PubMed  Google Scholar 

  36. Slesak I, Libik M, Karpinska B, Karpinski S, Miszalski Z (2007) The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim Pol 54:39–50

    PubMed  CAS  Google Scholar 

  37. Colmer TD, Voesenek LACJ (2009) Flooding tolerance: suites of plant traits in variable environments. Funct Plant Biol 36:665–681

    Article  Google Scholar 

  38. Dunand C, Crevecoeur M, Penel C (2007) Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytol 174:332–341

    Article  PubMed  CAS  Google Scholar 

  39. Singh HP, Batish DR, Kohli RK, Arora K (2007) Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regul 53:65–73

    Article  CAS  Google Scholar 

  40. Singh N, Ma LQ, Srivastava M, Rathinasabapathi B (2006) Metabolic adaptations to arsenic-induced oxidative stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci 170:274–282

    Article  CAS  Google Scholar 

  41. Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20:181–189

    Article  PubMed  CAS  Google Scholar 

  42. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  PubMed  CAS  Google Scholar 

  43. Stone JR, Yang SP (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–270

    Article  PubMed  CAS  Google Scholar 

  44. Ma B, Wan J, Shen Z (2007) H2O2 production and antioxidant responses in seeds and early seedlings of two different rice varieties exposed to aluminum. Plant Growth Regul 52:91–100

    Article  CAS  Google Scholar 

  45. Anderson JA (1995) Lipid-peroxidation and plant tissue disorders—introduction to the workshop. HortScience 30:196–197

    Google Scholar 

  46. Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: evidence and possible mechanisms. Plant Sci 173:603–608

    Article  CAS  Google Scholar 

  47. Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248:565–577

    Article  PubMed  CAS  Google Scholar 

  48. Pavlík M, Pavlíková D, Staszková L, Neuberg M, Kaliszová R, Száková J, Tlustoš P (2010) The effect of arsenic contamination on amino acids metabolism in Spinacia oleracea L. Ecotoxicol Environ Saf 73:1309–1313

    Article  PubMed  Google Scholar 

  49. Melchers LS, Stuiver MH (2000) Novel genes for disease-resistance breeding. Curr Opin Plant Biol 3:147–152

    Article  PubMed  CAS  Google Scholar 

  50. Broglie R, Broglie K (1993) Production of disease-resistant transgenic plants. Curr Opin Biotechnol 4:148–151

    Article  CAS  Google Scholar 

  51. Barber MS, Bertram RE, Ride JP (1989) Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiol Mol Plant Pathol 34:3–12

    Article  CAS  Google Scholar 

  52. Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T (1999) Enhanced resistance to blast (Magnaporthe grisea) in transgenic Japonica rice by constitutive expression of rice chitinase. Theor Appl Genet 99:383–390

    Article  PubMed  CAS  Google Scholar 

  53. Summermatter K, Sticher L, Metraux JP (1995) Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv. syringae. Plant Physiol 108:1379–1385

    PubMed  CAS  Google Scholar 

  54. Cuypers A, Vangronsveld J, Clijsters H (2002) Peroxidases in roots and primary leaves of Phaseolus vulgaris copper and zinc phytotoxicity: a comparison. J Plant Physiol 159:869–876

    Article  CAS  Google Scholar 

  55. Agarwal S, Shaheen R (2007) Stimulation of antioxidant system and lipid peroxidation by abiotic stresses in leaves of Momordica charantia. Braz J Plant Physiol 19:149–161

    Article  CAS  Google Scholar 

  56. Oliveira JTA, Andrade NC, Martins-Miranda AS, Soares AA, Gondim DMF, Araujo-Filho JH, Freire-Filho FR, Vasconcelos IM (2012) Differential expression of antioxidant enzymes and PR-proteins in compatible and incompatible interactions of cowpea (Vigna unguiculata) and the root-knot nematode Meloidogyne incognita. Plant Physiol Biochem 51:145–152

    Article  PubMed  CAS  Google Scholar 

  57. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  58. Yasuda M, Ishikawa A, Jikumaru Y, Seki M, Umezawa T, Asami T, Maruyama-Nakashita A, Kudo T, Shinozaki K, Yoshida S, Nakashita H (2008) Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20:1678–1692

    Article  PubMed  CAS  Google Scholar 

  59. Bionaz M, Loor JJ (2012) Ruminant metabolic systems biology: reconstruction and integration of transcriptome dynamics underlying functional responses of tissues to nutrition and physiological state. Gene Regul Syst Bio 6:109–125

    PubMed  Google Scholar 

  60. Amaya I, Botella MA, de la Calle M, Medina MI, Heredia A, Bressan RA, Hasegawa PM, Quesada MA, Valpuesta V (1999) Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Lett 457:80–84

    Article  PubMed  CAS  Google Scholar 

  61. Passarinho PA, Van Hengel AJ, Fransz PF, de Vries SC (2001) Expression pattern of the Arabidopsis thaliana AtEP3/AtchitIV endochitinase gene. Planta 212:556–567

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the Slovak Grant Agency VEGA No. 2/0062/11 and UGA/VII/27/2012. The authors are grateful to the anonymous reviewers for their comments that helped to improve the earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildikó Matušíková.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 Effect of arsenic on the fresh- and dry weight of soybean roots (DOC 292 kb)

Online Resource 2 Effect of arsenic on cell viability of soybean roots (DOC 270 kb)

Online Resource 3 Effect of arsenic on the amount of hydrogen peroxide in soybean roots (DOC 281 kb)

Online Resource 4 Effect of arsenic on the rate of lipid peroxidation in soybean roots (DOC 37 kb)

Online Resource 5 Effect of arsenic on the proline content of soybean roots (DOC 316 kb)

Online Resource 6 Effect of arsenic on the accumulation of chitinases in soybean roots (DOC 1229 kb)

11033_2012_2271_MOESM7_ESM.doc

Online Resource 7 Correlation analyses on interaction of certain parameters of stress- and defense during exposure of soybean roots to arsenic (DOC 83 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mészáros, P., Rybanský, Ľ., Hauptvogel, P. et al. Cultivar-specific kinetics of chitinase induction in soybean roots during exposure to arsenic. Mol Biol Rep 40, 2127–2138 (2013). https://doi.org/10.1007/s11033-012-2271-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2271-y

Keywords

Navigation