Skip to main content
Log in

Molecular cloning and characterization of toll-like receptor 3, and inductive expression analysis of type I IFN, Mx and pro-inflammatory cytokines in the Indian carp, rohu (Labeo rohita)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Toll-like receptors (TLRs) are one of the key components of innate or non-specific immunity. Among various types of TLRs, TLR3 recognizes dsRNA, the genetic material or replicative intermediate of many RNA viruses and triggers TIR-domain-containing adapter-inducing interferon-β dependent signalling pathway to induce type I interferon (IFN) and pro-inflammatory cytokines. In this study, we cloned and characterized full-length TLR3 cDNA in rohu (Labeo rohita), that comprised of 2,619 bp nucleotides encoding a putative protein of 873 amino acid with the estimated molecular mass of 98.57 kDa. The constitutive expression of TLR3 gene was detected in all embryonic developmental stages and in various organs/tissues of rohu fingerlings. In vivo tissue specific modulation of TLR3, type I IFN, Mx (myxovirus-resistant protein) and pro-inflammatory cytokines (TNF-α and IL-1β) gene expression were analysed by quantitative real-time PCR following intravenous injection of polyinosinic-polycytidylic acid (poly I:C), a synthetic analogue of viral dsRNA. A significant relationship of TLR3 induction, and type I IFN, Mx, IL-1β and TNF-α gene expression were observed in majority of the treated fish tissues, as compared to their control. Together, these data highlight the important role of TLR3 in recognizing dsRNA, and in augmenting the innate immunity in fish in response to viral infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Janeway C, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  PubMed  CAS  Google Scholar 

  2. Aoki T, Takano T, Santos MD et al (2008) Molecular innate immunity in Teleost fish: Review and future perspectives. In: 5th world fisheries congress, pp 263–276

  3. Strandskog G, Skjæveland I, Ellingsen T et al (2008) Double-stranded RNA- and CpG DNA-induced immune responses in Atlantic salmon: comparison and synergies. Vaccine 26(36):4704–4715

    Article  PubMed  CAS  Google Scholar 

  4. Medzhitov R, Preston-Hurlburt P, Janeway J (1997) A human homologue of the Drosophila toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  PubMed  CAS  Google Scholar 

  5. Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4:499–511

    Article  PubMed  CAS  Google Scholar 

  6. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Article  PubMed  CAS  Google Scholar 

  7. Roach JC, Glusman G, Rowen L et al (2005) The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582

    Article  PubMed  CAS  Google Scholar 

  8. Nishiya T, Kajita E, Miwa S et al (2005) TLR3 and TLR7 are targeted to the same intracellular compartments by distinct regulatory elements. J Biol Chem 280:37107–37117

    Article  PubMed  CAS  Google Scholar 

  9. Hoebe K, Du X, Georgel P et al (2003) Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743–748

    Article  PubMed  CAS  Google Scholar 

  10. Oshiumi H, Tsujita T, Shida K et al (2003) Prediction of the prototype of the human toll-like receptor gene family from the pufferfish, Fugu rubripes, genome. Immunogenetics 54:791–800

    PubMed  CAS  Google Scholar 

  11. Yamamoto M, Sato S, Hemmi H et al (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643

    Article  PubMed  CAS  Google Scholar 

  12. Alexopoulou L, Holt AC, Medzhitov R et al (2001) Recognition of double-stranded RNA and activation of NF-κB by toll like receptor 3. Nature 413:732–738

    Article  PubMed  CAS  Google Scholar 

  13. Matsumoto M, Funami K, Oshiumi H et al (2004) Toll-like receptor 3: a link between toll-like receptor, interferon and viruses. Microbiol Immunol 48:147–154

    PubMed  CAS  Google Scholar 

  14. Meijer AH, Gabby Krens SF, Medina Rodriguez IA et al (2004) Expression analysis of the toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol 40:773–783

    Article  PubMed  CAS  Google Scholar 

  15. Jault C, Pichon L, Chluba J (2004) Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 40:759–771

    Article  PubMed  CAS  Google Scholar 

  16. Phelan PE, Mellon MT, Kim CH (2005) Functional characterization of full-length TLR3, IRAK-4, and TRAF6 in zebrafish (Danio rerio). Mol Immunol 42:1057–1071

    Article  PubMed  CAS  Google Scholar 

  17. Bilodeau AL, Waldbieser GC (2005) Activation of TLR3 and TLR5 in channel catfish exposed to virulent Edwardsiella ictaluri. Dev Comp Immunol 29:713–721

    Article  PubMed  CAS  Google Scholar 

  18. Bilodeau AL, Peterson BC, Bosworth BG (2006) Response of toll like receptors, lysozyme, and IGF-I in back-cross hybrid [F1male (blue × channel) × female channel] catfish challenged with virulent Edwardsiella ictaluri. Fish Shellfish Immunol 20:29–39

    Article  PubMed  CAS  Google Scholar 

  19. Peterson BC, Bosworth BG, Bilodeau AL (2005) Differential gene expression of IGF-I, IGF-II, and toll-like receptors 3 and 5 during embryogenesis in hybrid (channel × blue) and channel catfish. Comp Biochem Physiol A Mol Integr Physiol 141:42–47

    Article  PubMed  Google Scholar 

  20. Rodriguez MF, Wiens GD, Purcell MK et al (2005) Characterization of toll-like receptor 3 gene in rainbow trout (Oncorhynchus mykiss). Immunogenetics 57:510–519

    Article  PubMed  CAS  Google Scholar 

  21. Su J, Zhu Z, Wang Y et al (2008) Toll-like receptor 3 regulates Mx expression in rare minnow Gobiocypris rarus after viral infection. Immunogenetics 60:195–205

    Article  PubMed  CAS  Google Scholar 

  22. Su J, Jang S, Yang C et al (2009) Genomic organization and expression analysis of toll-like receptor 3 in grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 27:433–439

    Article  PubMed  CAS  Google Scholar 

  23. Yang C, Su J (2010) Molecular identification and expression analysis of toll-like receptor 3 in common carp Cyprinus carpio. J Fish Biol 76(8):1926–1939

    Article  PubMed  CAS  Google Scholar 

  24. Huang XN, Wang ZY, Yao CL (2011) Characterization of toll-like receptor 3 gene in large yellow croaker Pseudosciaena crocea. Fish Shellfish Immunol 31(1):106–998

    Article  CAS  Google Scholar 

  25. Hwang SD, Ohtani M, Hikima JI et al (2012) Molecular cloning and characterization of toll-like receptor 3 in Japanese flounder Paralichthys olivaceus. Dev Comp Immunol 37(1):87–96

    Article  PubMed  CAS  Google Scholar 

  26. Novoa B, Romero A, Mulero V et al (2006) Zebrafish (Danio rerio) as a model for the study of vaccination against viral haemorrhagic septicemia virus (VHSV). Vaccine 24:5806–5816

    Article  PubMed  CAS  Google Scholar 

  27. Heng J, Su J, Huang T et al (2011) The polymorphism and haplotype of TLR3 gene in grass carp (Ctenopharyngodon idella) and their associations with susceptibility/resistance to grass carp reovirus. Fish Shellfish Immunol 30:45–50

    Article  PubMed  CAS  Google Scholar 

  28. Zhang NZ, Zhang LF, Jiang YN et al (2009) Molecular analysis of spring viraemia of carp virus in china: a fatal aquatic viral disease that might spread in east Asian. PLoS ONE 4(7):e6337

    Article  PubMed  Google Scholar 

  29. Khiabanian Asl AH, Azizzadeh M, Bandehpour M et al (2008) The first report of SVC from Indian carp species by PCR and histopathologic methods in Iran. Pak J Biol Sci 11:2675–2678

    Article  Google Scholar 

  30. Eaton WD (1990) Anti-viral activity in four species of salmonids following exposure to poly inosinic:cytidylic acid. Dis Aquat Org 9:193–198

    Article  Google Scholar 

  31. Takami I, kwon SR, Nishizawa T et al (2010) Protection of Japanese flounder Paralichthys olivaceus from viral hemorrhagic septicemia (VHS) by Poly (I:C) immunization. Dis Aquat Org 89:109–115

    Article  PubMed  CAS  Google Scholar 

  32. FAO, NACA (2003) Quarterly aquatic animal disease report (Asia and Pacific region)

  33. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  34. Bendtsen JD, Nielsen H, von Heijne G et al (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  35. Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinf 4:29

    Article  Google Scholar 

  36. Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  37. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  38. Matsumoto M, Funami K, Tanabe M et al (2003) Subcellular localization of toll-like receptor 3 in human dendritic cells. J Immunol 171:3154–3162

    PubMed  CAS  Google Scholar 

  39. Kanther M, Rawls JF (2010) Host-microbe interactions in the developing zebrafish. Curr Opin Immunol 22:10–19

    Article  PubMed  CAS  Google Scholar 

  40. Huttenhuis HB, Grou CP, Taverne-Thiele AJ et al (2006) Carp (Cyprinus carpio L.) innate immune factors are present before hatching. Fish Shellfish Immunol 20:586–596

    Article  PubMed  CAS  Google Scholar 

  41. Basu M, Swain B, Sahoo BR et al (2012) Induction of toll-like receptor (TLR) 2, and MyD88-dependent TLR signaling in response to ligands stimulation and bacterial infections in the Indian major carp, mrigal (Cirrhinus mrigala). Mol Biol Rep 39(5):6015–6028

    Article  PubMed  CAS  Google Scholar 

  42. Basu M, Swain B, Maiti NK et al (2012) Inductive expression of toll-like receptor 5 (TLR5) and associated downstream signaling molecules following ligand exposure and bacterial infection in the Indian major carp, mrigal (Cirrhinus mrigala). Fish Shellfish Immunol 32(1):121–131

    Article  PubMed  CAS  Google Scholar 

  43. Swain B, Basu M, Samanta M (2012) Molecular cloning and characterization of nucleotide binding and oligomerization domain-1 (NOD1) receptor in the Indian Major Carp, rohu (Labeo rohita), and analysis of its inductive expression and down-stream signalling molecules following ligands exposure and Gram-negative bacterial infections. Fish Shellfish Immunol 32(5):899–908

    Article  PubMed  CAS  Google Scholar 

  44. Swain B, Basu M, Sahoo BR et al (2012) Molecular characterization of nucleotide binding and oligomerization domain (NOD)-2, analysis of its inductive expression and down-stream signalling following ligands exposure and bacterial infection in rohu (L. rohita). Dev Comp Immunol 36(1):93–103

    Article  PubMed  CAS  Google Scholar 

  45. Samanta M, Swain B, Basu M et al (2012) Molecular characterization of toll-like receptor 2 (TLR2), analysis of its inductive expression and associated down-stream signaling molecules following ligands exposure and bacterial infection in the Indian major carp, rohu (Labeo rohita). Fish Shellfish Immunol 32(3):411–425

    Article  PubMed  CAS  Google Scholar 

  46. Baoprasertkul P, Peatman E, Somridhvei B et al (2006) Toll-like receptor 3 and TICAM genes in catfish: species-specific expression profiles following infection with Edwardsiella ictaluri. Immunogenetics 58(10):817–830

    Article  PubMed  CAS  Google Scholar 

  47. Engelsma MY, Stet RJM, Schipper H, Verburg-van Kemenade BM (2001) Regulation of interleukin 1 beta RNA expression in the common carp Cyprinus carpio L. Dev Comp Immunol 25(3):195–203

    Article  PubMed  CAS  Google Scholar 

  48. Zoysa MD, Nikapitiya C, Oh C et al (2010) Molecular evidence for the existence of lipopolysaccharide-induced TNF-alpha factor (LITAF) and Rel/NF-kB pathways in disk abalone (Haliotis discus discus). Fish Shellfish Immunol 28:754–763

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the grant of National Agricultural Innovation Project (NAIP) of the Indian Council of Agricultural Research (ICAR) (Project code C4-C30018). We thank Dr. P. Routray, Senior Scientist, Aquaculture Production and Environment Division, CIFA, for hatchery facility, expert consultations and various suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mrinal Samanta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samanta, M., Basu, M., Swain, B. et al. Molecular cloning and characterization of toll-like receptor 3, and inductive expression analysis of type I IFN, Mx and pro-inflammatory cytokines in the Indian carp, rohu (Labeo rohita). Mol Biol Rep 40, 225–235 (2013). https://doi.org/10.1007/s11033-012-2053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2053-6

Keywords

Navigation