Skip to main content

Advertisement

Log in

Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This study was designed to examine the interactions of ergosterol with bovine serum albumin (BSA) and human serum albumin (HSA) under physiological conditions with the drug concentrations in the range of 2.99–105.88 μM and the concentration of proteins was fixed at 5.0 μM. The analysis of emission spectra quenching at different temperatures revealed that the quenching mechanism of HSA/BSA by ergosterol was the static quenching. The number of binding sites n and the binding constants K were obtained at various temperatures. The distance r between ergosterol and HSA/BSA was evaluated according to Föster non-radioactive energy transfer theory. The results of synchronous fluorescence, 3D fluorescence, FT-IR, CD and UV–Vis absorption spectra showed that the conformations of HSA/BSA altered in the presence of ergosterol. The thermodynamic parameters, free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) for BSA–ergosterol and HSA–ergosterol systems were calculated by the van’t Hoff equation and discussed. Besides, with the aid of three site markers (for example, phenylbutazone, ibuprofen and digitoxin), we have reported that ergosterol primarily binds to the tryptophan residues of BSA/HSA within site I (subdomain II A).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Samanta A, Paul BK, Guchhait N (2011) Spectroscopic probe analysis for exploring probe–protein interaction: a mapping of native, unfolding and refolding of protein bovine serum albumin by extrinsic fluorescence probe. Biophys Chem 156:128–139. doi:10.1016/j.bpc.2011.03.008

    Article  PubMed  CAS  Google Scholar 

  2. Pan XR, Qin PF, Liu RT, Wang J (2011) Characterizing the Interaction between Tartrazine and two serum albumins by a hybrid spectroscopic approach. J Agric Food Chem 59:6650–6656. doi:10.1021/jf200907x

    Article  PubMed  CAS  Google Scholar 

  3. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215. doi:10.1038/358209a0

    Article  PubMed  CAS  Google Scholar 

  4. Sandhya B, Hegde AH, Kalanur SS, Katrahalli U, Seetharamappa J (2011) Interaction of triprolidine hydrochloride with serum albumins: thermodynamic and binding characteristics, and influence of site probes. J Pharmaceut Biomed 54:1180–1186. doi:10.1016/j.jpba.2010.12.012

    Article  CAS  Google Scholar 

  5. Charbonneau DM, Tajmir-Riahi HA (2010) Study on the interaction of cationic lipids with bovine serum albumin. J Phys Chem B 114:1148–1155. doi:10.1021/jp910077h

    Article  PubMed  CAS  Google Scholar 

  6. Teng Y, Liu RT, Li C, Xia Q, Zhang PJ (2011) The interaction between 4-aminoantipyrine and bovine serum albumin: multiple spectroscopic and molecular docking investigations. J Hazard Mater 190:574–581. doi:10.1016/j.jhazmat.2011.03.084

    Article  PubMed  CAS  Google Scholar 

  7. Zhao YY, Cheng XL, Liu R, Ho CC, Wei F, Yan SH, Lin RC, Zhang YM, Sun WJ (2011) Pharmacokinetics of ergosterol in rats using rapid resolution liquid chromatography–atmospheric pressure chemical ionization multi-stage tandem mass spectrometry and rapid resolution liquid chromatography/tandem mass spectrometry. J Chromatogr B 879:1945–1953. doi:10.1016/j.jchromb.2011.05.025

    Article  CAS  Google Scholar 

  8. Zhao YY, Xie RM, Chao X, Zhang YM, Lin RC, Sun WJ (2009) Bioactivity-directed isolation, identification of diuretic compounds from Polyporus umbellatus. J Ethnopharmacol 126:184–187. doi:10.1016/j.jep.2009.07.033

    Article  PubMed  CAS  Google Scholar 

  9. Matsuda H, Akaki J, Nakamura S, Okazaki Y, Kojima H, Tamesada M, Yoshikawa M (2009) Apoptosis-inducing effects of sterols from the dried powder of cultured mycelium of Cordyceps sinensis. Chem Pharm Bull 57:411–414. doi:10.1248/cpb.57.411

    Article  PubMed  CAS  Google Scholar 

  10. Yasukawa K, Aoki T, Takido M, Ikekawa T, Saitoh H, Matsuzawa T (1994) Inhibitory effects of ergosterol isolated from the edible mushroom Hypsizigus marmoreus on TPA-induced inflammatory ear oedema and tumor promotion in mice. Phytother Res 8:10–13. doi:10.1002/ptr.2650080103

    Article  CAS  Google Scholar 

  11. Bard M, Lees ND, Turi T, Craft D, Cofrin L, Barbuch R, Koegel C, Loper JC (1993) Sterol synthesis and viability of erg11 (cytochrome P450 lanosterol demethylase) mutations in Saccharomyces cerevisiae and Candida albicans. Lipids 28:963–967. doi:10.1007/BF02537115

    Article  PubMed  CAS  Google Scholar 

  12. Alcazar-Fuoli L, Mellado E, Garcia-Effron G, Lopez JF, Grimalt JO, Cuenca-Estrella JM, Rodriguez-Tudela JL (2008) Ergosterol biosynthesis pathway in Aspergillus fumigates. Steroids 73:339–347. doi:10.1016/j.steroids.2007.11.005

    Article  PubMed  CAS  Google Scholar 

  13. Wang YX, Li L, Sheng LJ, Song GW, Xu ZS (2011) Spectroscopic study on the inherent binding information of cationic perfluorinated surfactant with bovine serum albumin. J Fluor Chem 132:489–494. doi:10.1016/j.jfluchem.2011.05.003

    Article  CAS  Google Scholar 

  14. Paramaguru G, Kathiravan A, Selvaraj S, Venuvanalingam P, Renganathan R (2010) Interaction of anthraquinone dyes with lysozyme: evidences from spectroscopic and docking studies. J Hazard Mater 175:985–991. doi:10.1016/j.jhazmat.2009.10.107

    Article  PubMed  CAS  Google Scholar 

  15. Cheng ZJ, Zhang YT (2008) Fluorometric investigation on the interaction of oleanolic acid with bovine serum albumin. J Mol Struct 879:81–87. doi:10.1016/j.molstruc.2007.08.020

    Article  CAS  Google Scholar 

  16. Eftink MR, Ghiron CA (1981) Fluorescence quenching studies with proteins. Anal Biochem 114:199–227. doi:10.1016/0003-2697(81)90474-7

    Article  PubMed  CAS  Google Scholar 

  17. Zhang YZ, Zhang J, Li FF, Xiang X, Ren AQ, Liu Y (2011) Studies on the interaction between benzophenone and bovine serum albumin by spectroscopic methods. Mol Biol Rep 38:2445–2453. doi:10.1007/s11033-010-0380-z

    Article  PubMed  CAS  Google Scholar 

  18. Gao H, Lei LD, Liu JQ, Kong Q, Chen XG, Hu ZD (2004) The study on the interaction between human serum albumin and a new reagent with antitumour activity by spectrophotometric methods. J Photochem Photobiol Part A 167:213–221. doi:10.1016/j.jphotochem.2004.05.017

    Article  CAS  Google Scholar 

  19. Ross DP, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102. doi:10.1021/bi00514a017

    Article  PubMed  CAS  Google Scholar 

  20. Li DJ, Zhu M, Xu C, Ji BM (2011) Characterization of the baicaleine bovine serum albumin complex without or with Cu2+ or Fe3+ by spectroscopic approaches. Eur J Med Chem 46:588–599. doi:10.1016/j.ejmech.2010.11.038

    Article  PubMed  CAS  Google Scholar 

  21. Bhattacharya B, Nakka S, Guruprasad L, Samanta A (2009) Interaction of bovine serum albumin with dipolar molecules: fluorescence and molecular docking studies. J Phys Chem B 113:2143–2150. doi:10.1021/jp808611b

    Article  PubMed  CAS  Google Scholar 

  22. Chi Z, Liu R, Teng Y, Fang X, Gao C (2010) Binding of oxytetracycline to bovine serum albumin: spectroscopic and molecular modeling investigations. J Agric Food Chem 58:10262–10269. doi:10.1021/jf101417w

    Article  PubMed  CAS  Google Scholar 

  23. Zhang J, Wang XJ, Yan YJ, Xiang WS (2011) Comparative studies on the interaction of genistein, 8-chlorogenistein, and 3′, 8-dichlorogenistein with bovine serum albumin. J Agric Food Chem 59:7506–7513. doi:10.1021/jf2005194

    Article  PubMed  CAS  Google Scholar 

  24. Skaikh SMT, Seetharamappa J, Kandagal PB, Ashoka S (2006) Binding of the bioactive component isothipendyl hydrochloride with bovine serum albumin. J Mol Struct 786:46–52. doi:10.1016/j.molstruc.2005.10.021

    Article  Google Scholar 

  25. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen: a probe for structural fluctuation in macromolecules. Biochemistry 12:4161–4170. doi:10.1021/bi00745a020

    Article  PubMed  CAS  Google Scholar 

  26. Jiang CQ, Gao MX, Meng XZ (2003) Study of the interaction between daunorubicin and human serum albumin, and the determination of daunorubicin in blood serum samples. Spectrochim Acta Part A 59:1605–1610. doi:10.1016/S1386-1425(02)00362-1

    Article  Google Scholar 

  27. Wang YQ, Zhang HM, Zhang GC, Liu SX, Zhou QH, Fei ZH, Liu ZT (2007) Studies of the interaction between paraquat and bovine hemoglobin. Int J Biol Macromol 41:243–250. doi:10.1016/j.ijbiomac.2007.02.011

    Article  PubMed  CAS  Google Scholar 

  28. Guo XJ, Hao AJ, Han XW, Kang PL, Jiang YC, Zhang XJ (2011) The investigation of the interaction between ribavirin and bovine serum albumin by spectroscopic methods. Mol Biol Rep 38:4185–4192. doi:10.1007/s11033-010-0539-7

    Article  PubMed  CAS  Google Scholar 

  29. Yu XY, Liu RH, Yang FX, Ji DH, Li XF, Chen J, Huang HW, Yi PG (2011) Study on the interaction between dihydromyricetin and bovine serum albumin by spectroscopic techniques. J Mol Struct 985:407–412. doi:10.1016/j.molstruc.2010.11.034

    Article  CAS  Google Scholar 

  30. Chen TT, Cao H, Zhu SJ, Lu YP, Shang YF, Wang M, Tang YF, Zhu L (2011) Investigation of the binding of salvianolic acid B to human serum albumin and the effect of metal ions on the binding. Spectrochim Acta Part A 81:645–652. doi:10.1016/j.saa.2011.06.068

    Article  CAS  Google Scholar 

  31. Zhang LN, Wu FY, Liu AH (2011) Study of the interaction between 2,5-di-[2-(4-hydroxy-phenyl)ethylene]-terephthalonitril and bovine serum albumin by fluorescence spectroscopy. Spectrochim Acta Part A 79:97–103. doi:10.1016/j.saa.2011.02.013

    Article  CAS  Google Scholar 

  32. Naik PN, Chimatadar SA, Nandibewoor ST (2010) Interaction between a potent corticosteroid drug–dexamethasone with bovine serum albumin and human serum albumin: a fluorescence quenching and fourier transformation infrared spectroscopy study. J Photochem Photobiol B 100:147–159. doi:10.1016/j.jphotobiol.2010.05.014

    Article  PubMed  CAS  Google Scholar 

  33. Li DJ, Wang Y, Chen JJ, Ji BM (2011) Characterization of the interaction between farrerol and bovine serum albumin by fluorescence and circular dichroism. Spectrochim Acta Part A 79:680–686. doi:10.1016/j.saa.2011.04.005

    Article  CAS  Google Scholar 

  34. Mandeville JS, Tajmir-Riahi HA (2010) Complexes of dendrimers with bovine serum albumin. Biomacromolecules 11:465–472. doi:10.1021/bm9011979

    Article  PubMed  CAS  Google Scholar 

  35. Khan AB, Khan JM, Ali MS, Khan RH, Din K (2011) Spectroscopic approach of the interaction study of amphiphilic drugs with the serum albumins. Colloid Surf B 87:447–453. doi:10.1016/j.colsurfb.2011.06.007

    Article  CAS  Google Scholar 

  36. Bourassa P, Kanakis CD, Tarantilis P, Pollissiou MG, Tajmir-Riahi HA (2010) Resveratrol, genistein, and curcumin bind bovine serum albumin. J Phys Chem B 114:3348–3354. doi:10.1021/jp9115996

    Article  PubMed  CAS  Google Scholar 

  37. Bourassa P, Hasni I, Tajmir-Riahi HA (2011) Folic acid complexes with human and bovine serum albumins. Food Chem 129:1148–1155. doi:10.1016/j.foodchem.2011.05.094

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges financial support by the Education Department of Sichuan Province (12ZA171).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengjun Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Z. Interaction of ergosterol with bovine serum albumin and human serum albumin by spectroscopic analysis. Mol Biol Rep 39, 9493–9508 (2012). https://doi.org/10.1007/s11033-012-1814-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1814-6

Keywords

Navigation