Skip to main content
Log in

Transcriptional regulation of aquaporin-3 in human retinal pigment epithelial cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The expression of aquaporin (AQP) water channels may influence the development of retinal edema. We investigated the transcriptional regulation of AQP3 in cultured human retinal pigment epithelial (RPE) cells. As shown by RT-PCR and immunocytochemistry, cultured RPE cells express AQP3 mRNA and protein. The AQP3 mRNA level in RPE cells was elevated under the following conditions: chemical hypoxia induced by CoCl2, hyperosmolarity induced by 100 mM NaCl, and upon stimulation of the cultures with PDGF, arachidonic acid, prostaglandin E2, and blood serum, respectively. Chemical hypoxia increased AQP3 gene expression through MEK/ERK and JNK activation. The hyperosmolarity-, PDGF-, and serum-induced upregulation of AQP3 was prevented by inhibition of the phospholipase A2, but not by inhibition of the cyclooxygenase. Triamcinolone acetonide prevented the upregulation of AQP3 induced by arachidonic acid and prostaglandin E2, but not by the other factors tested. It is concluded that AQP3 is transcriptionally activated in RPE cells by various pathogenic factors involved in the development of retinal edema in situ. Activation of phospholipase A2 is a critical factor which induces AQP3 in RPE cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bresnick GH (1983) Diabetic maculopathy. A critical review highlighting diffuse macular edema. Ophthalmology 90:1301–1317

    PubMed  CAS  Google Scholar 

  2. Bressler NM, Bressler SB, Fine SL (2001) Neovascular (exudative) age-related macular degeneration. In: Schachat AP (ed) Retina. Mosby, St Louis, pp 1100–1135

    Google Scholar 

  3. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  PubMed  CAS  Google Scholar 

  4. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, Osborne NN, Reichenbach A (2006) Müller cells in the healthy and diseased retina. Prog Retin Eye Res 25:397–424

    Article  PubMed  CAS  Google Scholar 

  5. Stamer WD, Bok D, Hu J, Jaffe GJ, McKay BS (2003) Aquaporin-1 channels in human retinal pigment epithelium: role in transepithelial water movement. Invest Ophthalmol Vis Sci 44:2803–2808

    Article  PubMed  Google Scholar 

  6. Nagelhus EA, Mathiisen TM, Ottersen OP (2004) Aquaporin-4 in the central nervous system: cellular and subcellular distribution and coexpression with Kir4.1. Neuroscience 129:905–913

    Article  PubMed  CAS  Google Scholar 

  7. Bringmann A, Reichenbach A, Wiedemann P (2004) Pathomechanisms of cystoid macular edema. Ophthalmic Res 36:241–249

    Article  PubMed  Google Scholar 

  8. Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla TA, Ways K, Jirousek M, Smith LE, King GL (1997) Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 46:1473–1480

    Article  PubMed  CAS  Google Scholar 

  9. Claudio L, Martiney JA, Brosnan CF (1994) Ultrastructural studies of the blood-retina barrier after exposure to interleukin-1ß or tumor necrosis factor-α. Lab Invest 70:850–861

    PubMed  CAS  Google Scholar 

  10. Luna JD, Chan CC, Derevjanik NL, Mahlow J, Chiu C, Peng B, Tobe T, Campochiaro PA, Vinores SA (1997) Blood-retinal barrier (BRB) breakdown in experimental autoimmune uveoretinitis: comparison with vascular endothelial growth factor, tumor necrosis factor-α, and interleukin-1ß-mediated breakdown. J Neurosci Res 49:268–280

    Article  PubMed  CAS  Google Scholar 

  11. Derevjanik NL, Vinores SA, Xiao WH, Mori K, Turon T, Hudish T, Dong S, Campochiaro PA (2002) Quantitative assessment of the integrity of the blood-retinal barrier in mice. Invest Ophthalmol Vis Sci 43:2462–2467

    PubMed  Google Scholar 

  12. Hollborn M, Petto C, Steffen A, Trettner S, Bendig A, Wiedemann P, Bringmann A, Kohen L (2009) Effects of thrombin on RPE cells are mediated by transactivation of growth factor receptors. Invest Ophthalmol Vis Sci 50:4452–4459

    Article  PubMed  Google Scholar 

  13. Sakamoto T, Sakamoto H, Sheu SJ, Gabrielian K, Ryan SJ, Hinton DR (1994) Intercellular gap formation induced by thrombin in confluent cultured bovine retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 35:720–729

    PubMed  CAS  Google Scholar 

  14. Bian ZM, Elner SG, Elner VM (2007) Thrombin-induced VEGF expression in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 48:2738–2746

    Article  PubMed  Google Scholar 

  15. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  PubMed  CAS  Google Scholar 

  16. Ishibashi K (2006) Aquaporin subfamily with unusual NPA boxes. Biochim Biophys Acta 1758:989–993

    Article  PubMed  CAS  Google Scholar 

  17. Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T, Marumo F (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci USA 91:6269–6273

    Article  PubMed  CAS  Google Scholar 

  18. Echevarria M, Windhager EE, Frindt G (1996) Selectivity of the renal collecting duct water channel aquaporin-3. J Biol Chem 271:25079–25082

    Article  PubMed  CAS  Google Scholar 

  19. Kuriyama H, Kawamoto S, Ishida N, Ohno I, Mita S, Matsuzawa Y, Matsubara K, Okubo K (1997) Molecular cloning and expression of a novel human aquaporin from adipose tissue with glycerol permeability. Biochem Biophys Res Commun 241:53–58

    Article  PubMed  CAS  Google Scholar 

  20. Tsukaguchi H, Weremowicz S, Morton CC, Hediger MA (1999) Functional and molecular characterization of the human neutral solute channel aquaporin-9. Am J Physiol 277:F685–F696

    PubMed  CAS  Google Scholar 

  21. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA 107:15681–15686

    Article  PubMed  CAS  Google Scholar 

  22. Hollborn M, Rehak M, Iandiev I, Pannicke T, Ulbricht E, Reichenbach A, Wiedemann P, Bringmann A, Kohen L (2012) Transcriptional regulation of aquaporins in the ischemic rat retina: upregulation of aquaporin-9. Curr Eye Res (in press)

  23. Hollborn M, Dukic-Stefanovic S, Pannicke T, Ulbricht E, Reichenbach A, Wiedemann P, Bringmann A, Kohen L (2011) Expression of aquaporins in the retina of diabetic rats. Curr Eye Res 36:850–856

    Article  PubMed  CAS  Google Scholar 

  24. Fraser-Bell S, Kaines A, Hykin PG (2008) Update on treatments for diabetic macular edema. Curr Opin Ophthalmol 19:185–189

    Article  PubMed  Google Scholar 

  25. Silva PS, Sun JK, Aiello LP (2009) Role of steroids in the management of diabetic macular edema and proliferative diabetic retinopathy. Semin Ophthalmol 24:93–99

    Article  PubMed  Google Scholar 

  26. Orgül S, Reuter U, Kain HL (1993) Osmotic stress in an in vitro model of the outer blood-retinal barrier. Ger J Ophthalmol 2:436–443

    PubMed  Google Scholar 

  27. Miyake K, Ibaraki N (2002) Prostaglandins and cystoid macular edema. Surv Ophthalmol 47:S203–S218

    Article  PubMed  Google Scholar 

  28. Guex-Crosier Y (1999) The pathogenesis and clinical presentation of macular edema in inflammatory diseases. Doc Ophthalmol 97:297–309

    Article  PubMed  CAS  Google Scholar 

  29. Ishibashi K, Sasaki S, Saito F, Ikeuchi T, Marumo F (1995) Structure and chromosomal localization of a human water channel (AQP3) gene. Genomics 27:352–354

    Article  PubMed  CAS  Google Scholar 

  30. Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Takata K (1999) Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. J Histochem Cytochem 47:1275–1286

    Article  PubMed  CAS  Google Scholar 

  31. Hara-Chikuma M, Verkman AS (2008) Roles of aquaporin-3 in the epidermis. J Invest Dermatol 128:2145–2151

    Article  PubMed  CAS  Google Scholar 

  32. Levin MH, Verkman AS (2006) Aquaporin-3-dependent cell migration and proliferation during corneal re-epithelialization. Invest Ophthalmol Vis Sci 47:4365–4372

    Article  PubMed  Google Scholar 

  33. Hara-Chikuma M, Verkman AS (2008) Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Mol Cell Biol 28:326–332

    Article  PubMed  CAS  Google Scholar 

  34. Cao C, Wan S, Jiang Q, Amaral A, Lu S, Hu G, Bi Z, Kouttab N, Chu W, Wan Y (2008) All-trans retinoic acid attenuates ultraviolet radiation-induced down-regulation of aquaporin-3 and water permeability in human keratinocytes. J Cell Physiol 215:506–516

    Article  PubMed  CAS  Google Scholar 

  35. Boury-Jamot M, Daraspe J, Bonté F, Perrier E, Schnebert S, Dumas M, Verbavatz JM (2009) Skin aquaporins: function in hydration, wound healing, and skin epidermis homeostasis. Handb Exp Pharmacol 190:205–217

    Article  PubMed  CAS  Google Scholar 

  36. Huang Y, Zhu Z, Sun M, Wang J, Guo R, Shen L, Wu W (2010) Critical role of aquaporin-3 in the human epidermal growth factor-induced migration and proliferation in the human gastric adenocarcinoma cells. Cancer Biol Ther 9:1000–1007

    Article  PubMed  CAS  Google Scholar 

  37. Joussen AM, Poulaki V, Le ML, Koizumi K, Esser C, Janicki H, Schraermeyer U, Kociok N, Fauser S, Kirchhof B, Kern TS, Adamis AP (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18:1450–1452

    PubMed  CAS  Google Scholar 

  38. Ji C, Yang Y, Yang B, Xia J, Sun W, Su Z, Yu L, Shan S, He S, Cheng L, Wan Y, Bi Z (2010) Trans-Zeatin attenuates ultraviolet induced down-regulation of aquaporin-3 in cultured human skin keratinocytes. Int J Mol Med 26:257–263

    PubMed  CAS  Google Scholar 

  39. Song X, Xu A, Pan W, Wallin B, Kivlin R, Lu S, Cao C, Bi Z, Wan Y (2008) Nicotinamide attenuates aquaporin 3 overexpression induced by retinoic acid through inhibition of EGFR/ERK in cultured human skin keratinocytes. Int J Mol Med 22:229–236

    PubMed  CAS  Google Scholar 

  40. Cao C, Sun Y, Healey S, Bi Z, Hu G, Wan S, Kouttab N, Chu W, Wan Y (2006) EGFR-mediated expression of aquaporin-3 is involved in human skin fibroblast migration. Biochem J 400:225–234

    Article  PubMed  CAS  Google Scholar 

  41. Matsuzaki T, Suzuki T, Takata K (2001) Hypertonicity-induced expression of aquaporin 3 in MDCK cells. Am J Physiol Cell Physiol 281:C55–C63

    PubMed  CAS  Google Scholar 

  42. Sugiyama Y, Ota Y, Hara M, Inoue S (2001) Osmotic stress up-regulates aquaporin-3 gene expression in cultured human keratinocytes. Biochim Biophys Acta 1522:82–88

    PubMed  CAS  Google Scholar 

  43. Lambert IH, Pedersen SF, Poulsen KA (2006) Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxia. Acta Physiol (Oxf) 187:75–85

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Franziska Rickers for excellent technical assistance. This study was supported by grants from the Deutsche Forschungsgemeinschaft (KO 1547/6-1) and the Geschwister Freter Stiftung (Hannover, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margrit Hollborn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollborn, M., Ulbricht, E., Reichenbach, A. et al. Transcriptional regulation of aquaporin-3 in human retinal pigment epithelial cells. Mol Biol Rep 39, 7949–7956 (2012). https://doi.org/10.1007/s11033-012-1640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1640-x

Keywords

Navigation