Skip to main content
Log in

Genome-wide identification of palmitate-regulated immediate early genes and target genes in pancreatic beta-cells reveals a central role of NF-κB

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Free fatty acid-induced pancreatic β-cell dysfunction plays a key role in the pathogenesis of type 2 diabetes. We conducted gene expression microarray analysis to comprehensively investigate the transcription machinery of palmitate-regulated genes in pancreatic β-cells in vitro. In particular, mouse pancreatic βTC3 cells were treated with palmitate in the presence or absence of cycloheximide (CHX), which blocks protein synthesis and thereby allows us to distinguish immediate early genes (IEGs) from their target genes. The microarray experiments identified 34 palmitate-regulated IEGs and 74 palmitate-regulated target genes. In silico promoter analysis revealed that transcription factor binding sites for NF-κB were over-represented, regulating approximately one-third of the palmitate-regulated target genes. In cells treated with CHX, nfkb1 showed an up-regulation by palmitate, suggesting that NF-κB could be an IEG. Functional enrichment analysis of 27 palmitate-regulated genes with NF-κB binding sites showed an over-representation of genes involved in immune response, inflammatory response, defense response, taxis, regulation of cell proliferation, and regulation of cell death pathways. Electrophoretic mobility shift assay showed that palmitate stimulates NF-κB activity both in the presence and absence of CHX. In conclusion, by identifying IEGs and target genes, the present study depicted a comprehensive view of transcription machinery underlying palmitate-induced inflammation and cell proliferation/death in pancreatic β-cells and our data demonstrated the central role of NF-κB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

FFA:

Free fatty acid

CHX:

Cycloheximide

IEG:

Immediate early gene

TF:

Transcription factor

TFBS:

Transcription factor binding site

DEG:

Differentially expressed genes

MMP:

Matrix metalloproteinase

References

  1. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444(7121):840–846. doi:10.1038/nature05482

    Article  PubMed  CAS  Google Scholar 

  2. Schenk S, Saberi M, Olefsky JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118(9):2992–3002. doi:10.1172/JCI34260

    Article  PubMed  CAS  Google Scholar 

  3. Lupi R, Dotta F, Marselli L, Del Guerra S, Masini M, Santangelo C, Patane G, Boggi U, Piro S, Anello M, Bergamini E, Mosca F, Di Mario U, Del Prato S, Marchetti P (2002) Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51(5):1437–1442

    Article  PubMed  CAS  Google Scholar 

  4. Piro S, Anello M, Di Pietro C, Lizzio MN, Patane G, Rabuazzo AM, Vigneri R, Purrello M, Purrello F (2002) Chronic exposure to free fatty acids or high glucose induces apoptosis in rat pancreatic islets: possible role of oxidative stress. Metabolism 51(10):1340–1347

    Article  PubMed  CAS  Google Scholar 

  5. Cnop M (2008) Fatty acids and glucolipotoxicity in the pathogenesis of type 2 diabetes. Biochem Soc Trans 36(Pt 3):348–352. doi:10.1042/BST0360348

    Article  PubMed  CAS  Google Scholar 

  6. Paolisso G, Tataranni PA, Foley JE, Bogardus C, Howard BV, Ravussin E (1995) A high concentration of fasting plasma non-esterified fatty acids is a risk factor for the development of NIDDM. Diabetologia 38(10):1213–1217

    Article  PubMed  CAS  Google Scholar 

  7. Boni-Schnetzler M, Boller S, Debray S, Bouzakri K, Meier DT, Prazak R, Kerr-Conte J, Pattou F, Ehses JA, Schuit FC, Donath MY (2009) Free fatty acids induce a proinflammatory response in islets via the abundantly expressed interleukin-1 receptor I. Endocrinology 150(12):5218–5229. doi:10.1210/en.2009-0543

    Article  PubMed  CAS  Google Scholar 

  8. Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ, Poitout V (2003) Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem 278(32):30015–30021. doi:10.1074/jbc.M302548200M302548200[pii]

    Article  PubMed  CAS  Google Scholar 

  9. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ (2007) Endoplasmic reticulum stress contributes to beta cell apoptosis in type 2 diabetes. Diabetologia 50(4):752–763. doi:10.1007/s00125-006-0590-z

    Article  PubMed  CAS  Google Scholar 

  10. Bikopoulos G, da Silva Pimenta A, Lee SC, Lakey JR, Der SD, Chan CB, Ceddia RB, Wheeler MB, Rozakis-Adcock M (2008) Ex vivo transcriptional profiling of human pancreatic islets following chronic exposure to monounsaturated fatty acids. J Endocrinol 196(3):455–464. doi:196/3/455[pii]10.1677/JOE-07-0174

    Article  PubMed  CAS  Google Scholar 

  11. Busch AK, Cordery D, Denyer GS, Biden TJ (2002) Expression profiling of palmitate- and oleate-regulated genes provides novel insights into the effects of chronic lipid exposure on pancreatic beta-cell function. Diabetes 51(4):977–987

    Article  PubMed  CAS  Google Scholar 

  12. Glauser DA, Brun T, Gauthier BR, Schlegel W (2007) Transcriptional response of pancreatic beta cells to metabolic stimulation: large scale identification of immediate-early and secondary response genes. BMC Mol Biol 8:54. doi:10.1186/1471-2199-8-54

    Article  PubMed  Google Scholar 

  13. Bourdeau V, Deschenes J, Laperriere D, Aid M, White JH, Mader S (2008) Mechanisms of primary and secondary estrogen target gene regulation in breast cancer cells. Nucleic Acids Res 36(1):76–93. doi:gkm945[pii]10.1093/nar/gkm945

    Article  PubMed  CAS  Google Scholar 

  14. Newton R, Adcock IM, Barnes PJ (1996) Superinduction of NF-kappa B by actinomycin D and cycloheximide in epithelial cells. Biochem Biophys Res Commun 218(2):518–523. doi:10.1006/bbrc.1996.0093

    Article  PubMed  CAS  Google Scholar 

  15. Faggioli L, Costanzo C, Merola M, Furia A, Palmieri M (1997) Protein synthesis inhibitors cycloheximide and anisomycin induce interleukin-6 gene expression and activate transcription factor NF-kappaB. Biochem Biophys Res Commun 233(2):507–513. doi:10.1006/bbrc.1997.6489

    Article  PubMed  CAS  Google Scholar 

  16. Aerts S, Van Loo P, Thijs G, Mayer H, de Martin R, Moreau Y, De Moor B (2005) TOUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis. Nucleic Acids Res 33 (Web Server issue):W393–396. doi:10.1093/nar/gki354

  17. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3

    Article  PubMed  Google Scholar 

  18. Brown KR, Jurisica I (2007) Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol 8(5):R95. doi:10.1186/gb-2007-8-5-r95

    Article  PubMed  Google Scholar 

  19. Donath MY, Boni-Schnetzler M, Ellingsgaard H, Halban PA, Ehses JA (2010) Cytokine production by islets in health and diabetes: cellular origin, regulation and function. Trends Endocrinol Metab 21(5):261–267. doi:10.1016/j.tem.2009.12.010

    Article  PubMed  CAS  Google Scholar 

  20. Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL (2004) Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappaB and endoplasmic reticulum stress. Endocrinology 145(11):5087–5096. doi:10.1210/en.2004-0478

    Article  PubMed  CAS  Google Scholar 

  21. Sweet MJ, Leung BP, Kang D, Sogaard M, Schulz K, Trajkovic V, Campbell CC, Xu D, Liew FY (2001) A novel pathway regulating lipopolysaccharide-induced shock by ST2/T1 via inhibition of Toll-like receptor 4 expression. J Immunol 166(11):6633–6639

    PubMed  CAS  Google Scholar 

  22. Mensah-Brown E, Shahin A, Parekh K, Hakim AA, Shamisi MA, Hsu DK, Lukic ML (2006) Functional capacity of macrophages determines the induction of type 1 diabetes. Ann N Y Acad Sci 1084:49–57. doi:10.1196/annals.1372.014

    Article  PubMed  CAS  Google Scholar 

  23. Mellado-Gil J, Rosa TC, Demirci C, Gonzalez-Pertusa JA, Velazquez-Garcia S, Ernst S, Valle S, Vasavada RC, Stewart AF, Alonso LC, Garcia-Ocana A (2011) Disruption of hepatocyte growth factor/c-Met signaling enhances pancreatic beta-cell death and accelerates the onset of diabetes. Diabetes 60(2):525–536. doi:10.2337/db09-1305

    Article  PubMed  CAS  Google Scholar 

  24. Santangelo C, Matarrese P, Masella R, Di Carlo MC, Di Lillo A, Scazzocchio B, Vecci E, Malorni W, Perfetti R, Anastasi E (2007) Hepatocyte growth factor protects rat RINm5F cell line against free fatty acid-induced apoptosis by counteracting oxidative stress. J Mol Endocrinol 38(1–2):147–158. doi:10.1677/jme.1.02133

    Article  PubMed  CAS  Google Scholar 

  25. Bertolino P, Holmberg R, Reissmann E, Andersson O, Berggren PO, Ibanez CF (2008) Activin B receptor ALK7 is a negative regulator of pancreatic beta-cell function. Proc Natl Acad Sci USA 105(20):7246–7251. doi:10.1073/pnas.0801285105

    Article  PubMed  CAS  Google Scholar 

  26. Fernandez-Real JM, Mercader JM, Ortega FJ, Moreno-Navarrete JM, Lopez-Romero P, Ricart W (2010) Transferrin receptor-1 gene polymorphisms are associated with type 2 diabetes. Eur J Clin Invest 40(7):600–607. doi:10.1111/j.1365-2362.2010.02306.x

    Article  PubMed  CAS  Google Scholar 

  27. Cardozo AK, Kruhoffer M, Leeman R, Orntoft T, Eizirik DL (2001) Identification of novel cytokine-induced genes in pancreatic beta-cells by high-density oligonucleotide arrays. Diabetes 50(5):909–920

    Article  PubMed  CAS  Google Scholar 

  28. Cardozo AK, Heimberg H, Heremans Y, Leeman R, Kutlu B, Kruhoffer M, Orntoft T, Eizirik DL (2001) A comprehensive analysis of cytokine-induced and nuclear factor-kappa B-dependent genes in primary rat pancreatic beta-cells. J Biol Chem 276(52):48879–48886. doi:10.1074/jbc.M108658200

    Article  PubMed  CAS  Google Scholar 

  29. Chillambhi S, Turan S, Hwang DY, Chen HC, Juppner H, Bastepe M (2010) Deletion of the noncoding GNAS antisense transcript causes pseudohypoparathyroidism type Ib and biparental defects of GNAS methylation in cis. J Clin Endocrinol Metab 95(8):3993–4002. doi:10.1210/jc.2009-2205

    Article  PubMed  CAS  Google Scholar 

  30. Frohlich LF, Mrakovcic M, Steinborn R, Chung UI, Bastepe M, Juppner H (2010) Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib. Proc Natl Acad Sci USA 107(20):9275–9280. doi:10.1073/pnas.0910224107

    Article  PubMed  CAS  Google Scholar 

  31. Conlin A, Kaltenbach T, Kusano C, Matsuda T, Oda I, Gotoda T (2010) Endoscopic resection of gastrointestinal lesions: advancement in the application of endoscopic submucosal dissection. J Gastroenterol Hepatol 25(8):1348–1357. doi:10.1111/j.1440-1746.2010.06402.x

    Article  PubMed  Google Scholar 

  32. Parks WC, Wilson CL, Lopez-Boado YS (2004) Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat Rev Immunol 4(8):617–629. doi:10.1038/nri1418nri1418[pii]

    Article  PubMed  CAS  Google Scholar 

  33. Wolf M, Albrecht S, Marki C (2008) Proteolytic processing of chemokines: implications in physiological and pathological conditions. Int J Biochem Cell Biol 40(6–7):1185–1198. doi:10.1016/j.biocel.2007.12.009

    Article  PubMed  CAS  Google Scholar 

  34. Roche E, Buteau J, Aniento I, Reig JA, Soria B, Prentki M (1999) Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic beta-cell line INS-1. Diabetes 48(10):2007–2014

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from the National Research Foundation (M10753020005-07N5302-00500), the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program and Seoul National University Hospital intramural research fund (0620083589), South Korea. We thank Dominique Glauser for helpful discussion on the confounding effects of cycloheximide.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Cho.

Additional information

Hyung Jin Choi and Seungwoo Hwang contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, H.J., Hwang, S., Lee, SH. et al. Genome-wide identification of palmitate-regulated immediate early genes and target genes in pancreatic beta-cells reveals a central role of NF-κB. Mol Biol Rep 39, 6781–6789 (2012). https://doi.org/10.1007/s11033-012-1503-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1503-5

Keywords

Navigation