Skip to main content
Log in

Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Phloridzin is the specific and competitive inhibition of sodium/glucose cotransporters in the intestine (SGLT1) and kidney (SGLT2). This property which could be useful in the management of postprandial hyperglycemia in diabetes and related disorders. Phloridzin is one of the dihydrochalcones typically contained in apples and in apple-derived products. The effect of phloridzin orally doses 5, 10, 20 and 40 mg/kg body weight on diabetes was tested in a streptozotocin-induced rat model of diabetes type 1. From beneficial effect of this compound is significant reduction of blood glucose levels and improve dyslipidemia in diabetic rats. As a well-known consequence of becoming diabetic, urine volume and water intake were significantly increased. Administration of phloridzin reduced urine volume and water intake in a dose-dependent manner. Phloretin decreases of food consumption, as well as a marked lowering in the weight. In conclusion, this compound could be proposed as an antihyperglycemic and antihyperlipidemic agent in diabetes and potential therapeutic in obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Song Y, Manson JE, Buring JE, Sesso HD, Liu S (2005) Associations of dietary flavonoids with risk of type 2 diabetes, and markers of insulin resistance and systemic inflammation in women: a prospective study and cross-sectional analysis. J Am Coll Nutr 24:376–384

    PubMed  CAS  Google Scholar 

  2. Arts IC, Hollman PC (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81(Suppl 1):317S–325S

    PubMed  CAS  Google Scholar 

  3. Knekt P, Jarvinen R, Reunanen A, Maatela J (1996) Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ 312:478–481

    Article  PubMed  CAS  Google Scholar 

  4. Knekt P, Kumpulainen J, Jarvinen R, Rissanen H, Heliovaara M, Reunanen A, Hakulinen T, Aromaa A (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76:560–568

    PubMed  CAS  Google Scholar 

  5. Russo GL (2007) Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochem Pharmacol 74:533–544

    Article  PubMed  CAS  Google Scholar 

  6. Woods RK, Walters EH, Raven JM, Wolfe R, Ireland PD, Thien FC, Abramson MJ (2003) Food and nutrient intakes and asthma risk in young adults. Am J Clin Nutr 78:414–421

    PubMed  CAS  Google Scholar 

  7. Linseisen J, Rohrmann S, Miller AB, Bueno-de-Mesquita HB, Buchner FL, Vineis P, Agudo A, Gram IT, Janson L, Krogh V, Overvad K, Rasmuson T, Schulz M, Pischon T, Kaaks R, Nieters A, Allen NE, Key TJ, Bingham S, Khaw KT, Amiano P, Barricarte A, Martinez C, Navarro C, Quiros R, Clavel-Chapelon F, Boutron-Ruault MC, Touvier M, Peeters PH, Berglund G, Hallmans G, Lund E, Palli D, Panico S, Tumino R, Tjonneland A, Olsen A, Trichopoulou A, Trichopoulos D, Autier P, Boffetta P, Slimani N, Riboli E (2007) Fruit and vegetable consumption and lung cancer risk: updated information from the European Prospective Investigation into Cancer and Nutrition (EPIC). Int J Cancer 121:1103–1114

    Article  PubMed  CAS  Google Scholar 

  8. Boyer J, Liu RH (2004) Apple phytochemicals and their health benefits. Nutr J 3:5

    Article  PubMed  Google Scholar 

  9. Mennen LI, Sapinho D, Ito H, Bertrais S, Galan P, Hercberg S, Scalbert A (2006) Urinary flavonoids and phenolic acids as biomarkers on intake for polyphenol-rich foods. Br J Nutr 96:191–198

    Article  PubMed  CAS  Google Scholar 

  10. Bellion P, Hofmann T, Pool-Zobel BL, Will F, Dietrich H, Knaup B, Richling E, Baum M, Eisenbrand G, Janzowski C (2008) Antioxidant effectiveness of phenolic apple juice extracts and their gut fermentation products in the human colon carcinoma cell line caco-2. J Agric Food Chem 56:6310–6317

    Article  PubMed  CAS  Google Scholar 

  11. Napolitano A, Cascone A, Graziani G, Ferracane R, Scalfi L, Di Vaio C, Ritieni A, Fogliano V (2004) Influence of variety and storage on the polyphenol composition of apple flesh. J Agric Food Chem 52:6526–6531

    Article  PubMed  CAS  Google Scholar 

  12. Wojdylo A, Oszmianski J, Laskowski P (2008) Polyphenolic compounds and antioxidant activity of new and old apple varieties. J Agric Food Chem 56:6520–6530

    Article  PubMed  CAS  Google Scholar 

  13. Lee KW, Kim YJ, Kim DO, Lee HJ, Lee CY (2003) Major phenolics in apple and their contribution to the total antioxidant capacity. J Agric Food Chem 51:6516–6520

    Article  PubMed  CAS  Google Scholar 

  14. Ehrenkranz JR, Lewis NG, Kahn CR, Roth J (2005) Phlorizin: a review. Diabetes/Metab Res Rev 21:31–38

    Article  CAS  Google Scholar 

  15. Pajor AM, Randolph KM, Kerner SA, Smith CD (2008) Inhibitor binding in the human renal low- and high-affinity Na+/glucose cotransporters. J Pharmacol Exp Ther 324:985–991

    Article  PubMed  CAS  Google Scholar 

  16. Tyagi NK, Kumar A, Goyal P, Pandey D, Siess W, Kinne RK (2007) d-Glucose recognition and phlorizin-binding sites in human sodium/d-glucose cotransporter 1 (hSGLT1): a tryptophan scanning study. Biochemistry 46:13616–13628

    Article  PubMed  CAS  Google Scholar 

  17. Liu IM, Chang CK, Juang SW, Kou DH, Tong YC, Cheng KC, Cheng JT (2008) Role of hyperglycaemia in the pathogenesis of hypotension observed in type-1 diabetic rats. Int J Exp Pathol 89:292–300

    Article  PubMed  CAS  Google Scholar 

  18. Zhao H, Yakar S, Gavrilova O, Sun H, Zhang Y, Kim H, Setser J, Jou W, LeRoith D (2004) Phloridzin improves hyperglycemia but not hepatic insulin resistance in a transgenic mouse model of type 2 diabetes. Diabetes 53:2901–2909

    Article  PubMed  CAS  Google Scholar 

  19. Takii H, Matsumoto K, Kometani T, Okada S, Fushiki T (1997) Lowering effect of phenolic glycosides on the rise in postprandial glucose in mice. Biosci Biotechnol Biochem 61:1531–1535

    Article  PubMed  CAS  Google Scholar 

  20. Oku A, Ueta K, Arakawa K, Ishihara T, Nawano M, Kuronuma Y, Matsumoto M, Saito A, Tsujihara K, Anai M, Asano T, Kanai Y, Endou H (1999) T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes 48:1794–1800

    Article  PubMed  CAS  Google Scholar 

  21. Verges B (2009) Lipid disorders in type 1 diabetes. Diabetes Metab 35:353–360

    Article  PubMed  CAS  Google Scholar 

  22. Gosavi A, Flaker G, Gardner D (2006) Lipid management reduces cardiovascular complications in individuals with diabetes and prediabetes. Prev Cardiol 9:102–107

    Article  PubMed  CAS  Google Scholar 

  23. Park Byung Hyun, Lee Yung, Walton Marlei, Duplomb Laurence, Roger H (2004) Demonstration of reverse fatty acid transport from rat cardiomyocytes. J Lipid Res 45:1992–1999

    Article  PubMed  CAS  Google Scholar 

  24. Marshall JJ, Lauda CM (1975) Purification and properties of phaseolamin, an inhibitor of alpha-amylase, from the kidney bean, Phaseolus vulgaris. J Biol Chem 250:8030–8037

    PubMed  CAS  Google Scholar 

  25. Tormo MA, Gil-Exojo I, Romero de Tejada A, Campillo JE (2004) Hypoglycaemic and anorexigenic activities of an α-amylase inhibitor from white kidney beans (Phaseolus vulgaris) in Wistar rats. Br J Nutr 92:785–790

    Article  PubMed  CAS  Google Scholar 

  26. Deeg R, Ziegenhorn J (1983) Kinetic enzymic method for automated determination of total cholesterol in serum. Clin Chem 29:1798–1802

    PubMed  CAS  Google Scholar 

  27. Cole TG, Klotzsch SG, McNamara J (1997) Measurement of triglyceride concentration. In: Rifai N, Warnick GR, Dominiczack MH (eds) Handbook of lipoprotein testing. AACC Press, Washington, pp 115–126

    Google Scholar 

  28. Wiebe DA, Warnick GR (1997) Measurement of high-density lipoprotein cholesterol. In: Rifai N, Warnick GR, Dominiczack MH (eds) Handbook of lipoprotein testing. AACC Press, Washington, pp 127–144

    Google Scholar 

  29. Bachorik PS (1997) Measurement of low-density lipoprotein cholesterol. In: Rifai N, Warnick GR, Dominiczack MH (eds) Handbook of lipoprotein testing. AACC Press, Washington, pp 145–160

    Google Scholar 

  30. Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18:499–502

    PubMed  CAS  Google Scholar 

  31. Navas PB (2009) Chemical composition of the virgin oil obtained by mechanical pressing form several grape seed varieties (Vitis vinifera L.) with emphasis on minor constituents. Arch Latinoam Nutr 59:214–219 (in Spanish)

    PubMed  CAS  Google Scholar 

  32. Tangolar SG, Ozogul Y, Tangolar S, Torun A (2007) Evaluation of fatty acid profiles and mineral content of grape seed oil of some grape genotypes. Int J Food Sci Nutr 60:1–8

    Google Scholar 

  33. Alberton EH, Damazio RG, Cazarolli LH, Chiaradia LD, Leal PC, Nunes RJ, Yunes RA, Silva FR (2008) Influence of chalcone analogues on serum glucose levels in hyperglycemic rats. Chem Biol Interact 171:355–362

    Article  PubMed  CAS  Google Scholar 

  34. Najafian M, Ebrahim-Habibi A, Hezareh N, Yaghmaei P, Parivar K, Larijani B (2010) Trans-chalcone: a novel small molecule inhibitor of mammalian alpha-amylase. Mol Biol Rep. doi:10.1007/s11033-010-0271-3

  35. Lo Piparo E, Scheib H, Frei N, Williamson G, Grigorov M, Chou CJ (2008) Flavonoids for controlling starch digestion: structural requirements for inhibiting human α-amylase. J Med Chem 51:3555–3561

    Article  PubMed  CAS  Google Scholar 

  36. Beisswenger P, Heine RJ, Leiter LA, Moses A, Tuomilehto J (2004) Prandial glucose regulation in the glucose triad: emerging evidence and insights. Endocrine 25:195–202

    Article  PubMed  CAS  Google Scholar 

  37. Chiasson JL, Josse RG, Gomis R, Hanefeld M, Karasik A, Laakso M (2004) Acarbose for the prevention of type 2 diabetes, hypertension and cardiovascular disease in subjects with impaired glucose tolerance: facts and interpretations concerning the critical analysis of the STOP-NIDDM Trial data. Diabetologia 47:969–975

    Article  PubMed  CAS  Google Scholar 

  38. Yamagishi S, Nakamura K, Takeuchi M (2005) Inhibition of postprandial hyperglycemia by acarbose is a promising therapeutic strategy for the treatment of patients with the metabolic syndrome. Med Hypotheses 65:152–154

    Article  PubMed  CAS  Google Scholar 

  39. Rosak C, Mertes G (2009) Effects of acarbose on proinsulin and insulin secretion and their potential significance for the intermediary metabolism and cardiovascular system. Curr Diabetes Rev 5:157–164

    Article  PubMed  CAS  Google Scholar 

  40. Casaschi A, Maiyoh GK, Rubio BK, Li RW, Adeli K, Theriault AG (2004) The chalcone xanthohumol inhibits triglyceride and apolipoprotein B secretion in HepG2 cells. J Nutr 134:1340–1346

    PubMed  CAS  Google Scholar 

  41. Ogawa H, Ohno M, Baba K (2005) Hypotensive and lipid regulatory actions of 4-hydroxyderricin, a chalcone from Angelica keiskei, in stroke-prone spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 32:19–23

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Najafian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Najafian, M., Jahromi, M.Z., Nowroznejhad, M.J. et al. Phloridzin reduces blood glucose levels and improves lipids metabolism in streptozotocin-induced diabetic rats. Mol Biol Rep 39, 5299–5306 (2012). https://doi.org/10.1007/s11033-011-1328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1328-7

Keywords

Navigation