Skip to main content

Advertisement

Log in

Sevoflurane-induced delayed neuroprotection involves mitoKATP channel opening and PKC ε activation

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

There is an increasing body of evidence that a brief exposure to anesthesia induces ischemic tolerance in rat brain (anesthetic preconditioning). However, it is unknown whether preconditioning with sevoflurane, a commonly used volatile anesthetic in current clinical practice, produces a delayed window of neuroprotection against ischemia and what the mechanisms are for this protection. To address these issues, adult male Sprague–Dawley rats were subjected to middle cerebral arterial occlusion (MCAO) for 2 h. Sevoflurane preconditioning was induced 24 h before brain ischemia by exposing the animals to sevoflurane at 1.0 minimum alveolar concentration (2.4%) in oxygen for 60 min. Animals preconditioned with sevoflurane had lower neurological deficit scores and smaller brain infarct volumes than animals with brain ischemia at 6 and 24 h after MCAO, respectively. Application of a selective antagonist for mitochondrial ATP-sensitive potassium (mitoKATP) channel, 5-hydroxydecanoate (5-HD, 40 mg/kg i.p.) 30 min before sevoflurane exposure attenuated this beneficial effect. Moreover, protein kinase C ε (PKC ε) was translocated to the membrane fraction at 6 h, but not 24 h, after brain reperfusion in animals preconditioned with sevoflurane and this effect was also abolished by 5-HD. We concluded that sevoflurane preconditioning induces a delayed neuroprotection and that mitochondrial KATP channels and PKC ε may be involved in this neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MitoKATP channel:

Mitochondrial ATP-sensitive potassium channel

PKC ε:

Protein kinase C epsilon

5-HD:

5-Hydroxydecanoate

MCAO:

Middle cerebral artery occlusion

IPC:

Ischemic preconditioning

VAPC:

Volatile anesthetic preconditioning

References

  1. Wang J, Lei B, Popp S, Meng F, Cottrell JE, Kass IS (2007) Sevoflurane immediate preconditioning alters hypoxic membrane potential changes in rat hippocampal slices and improves recovery of CA1 pyramidal cells after hypoxia and global cerebral ischemia. Neuroscience 145:1097–1107

    Article  PubMed  CAS  Google Scholar 

  2. Zheng S, Zuo Z (2003) Isoflurane preconditioning reduces purkinje cell death in an in vitro model of rat cerebellar ischemia. Neuroscience 118:99–106

    Article  PubMed  CAS  Google Scholar 

  3. Lutz M, Liu H (2006) Inhaled sevoflurane produces better delayed myocardial protection at 48 versus 24 hours after exposure. Anesth Analg 102:984–990

    Article  PubMed  CAS  Google Scholar 

  4. Li L, Peng L, Zuo Z (2008) Isoflurane preconditioning increase B-cell lymphoma-2 expression and reduces cytochrome c release from the mitochondria in the ischemic penumbra of rat brain. Eur J Pharmacol 586:106–113

    Article  PubMed  CAS  Google Scholar 

  5. Kapinya KJ, Löwl D, Fütterer C, Maurer M, Waschke KF, Isaev NK, Dirnaql U (2002) Tolerance against ischemic neuronal injury can be induced by volatile anesthetics and is inducible NO synthase dependent. Stroke 33:1889–1898

    Article  PubMed  CAS  Google Scholar 

  6. Chiari PC, Pagel PS, Tanaka K, Kro likowski JG, Ludwig LM, Trillo RA (2004) Intraveous emulsified halogenated anesthetics produce acute and delayed preconditioning against myocardium infraction in rabbits. Anesthesiology 101:1160–1166

    Article  PubMed  CAS  Google Scholar 

  7. Kehl F, Payne RS, Roewer N, Schurr A (2004) Sevoflurane-induced preconditioning of rat brain in vitro and the role of KATP channels. Brain Res 102:76–81

    Article  Google Scholar 

  8. Payne RS, Akca O, Roewer N, Kehl F (2005) Sevoflurane-induced preconditioning protects against cerebral ischemic neuronal damage in rats. Brain Res 1034:147–152

    Article  PubMed  CAS  Google Scholar 

  9. De Ruijter W, Musters RJ, Boer C, Stienen GM, Simonides WS, De Lange JJ (2003) The cardioprotective effect of sevoflurane depends on protein kinase C activation, opening of mitochondrial K+ ATP channels, and the production of reactive oxygen species. Anesth Analg 97:1370–1376

    Article  PubMed  Google Scholar 

  10. Uecker M, Da Silva R, Grampp T, Pasch T, Schaub MC, Zauqq M (2003) Translocation of protein kinase c isoforms to subcellular targets in ischemic and anesthetic preconditioning. Anesthesiology 99:138–147

    Article  PubMed  CAS  Google Scholar 

  11. Niu CC, Li JF, Cui XY, Han S, Zu P, Li H (2005) Changes in cPKC isoform-specific membrane translocation and protein expression in the brain of hypoxic preconditioned mice. Neurosci Lett 384:1–6

    Article  PubMed  CAS  Google Scholar 

  12. Fujiki M, Hikawa T, Abe T, Uchida S, Morishige M, Sugita K (2006) Role of protein kinase C in neuroprotective effect of geranylgeranylacetone, a noninvasive inducing agent of heat shock protein, on delayed neuronal death caused by transient ischemia in rats. J Neurotrauma 23:1164–1178

    Article  PubMed  Google Scholar 

  13. Kis B, Nagy K, Snipes JA, Rajapakse NC, Horiguchi T, Grover GJ (2004) The mitochondrial K-ATP channel opener BMS-191095 induces neuronal preconditioning. Neuroreport 15:345–349

    Article  PubMed  CAS  Google Scholar 

  14. Bright R, Sun GH, Yenari MA, Steinberg GK, Mochly-Rosen D (2008) ε PKC confers acute tolerance to cerebral ischemic reperfusion injury. Neurosci Lett 441:120–124

    Article  PubMed  CAS  Google Scholar 

  15. Raval AP, Dave KR, Mochly-Rosen D, Sick TJ, Perez-Pinzon MA (2003) Epsilon PKC is required for the induction of tolerance by ischemia and NMDA-mediated preconditioning in the organotypic hippocampal slice. J Neurosci 23:384–391

    PubMed  CAS  Google Scholar 

  16. Wang GY, Zhou JJ, Shan J, Wong TM (2001) Protein kinase C-epsilon is a trigger of delayed cardioprotection against myocardial ischemia of kappa-opioid receptor stimulation in rat ventricular myocytes. J Pharmacol Exp Ther 299:603–610

    PubMed  CAS  Google Scholar 

  17. Nayeem MA (2004) Sublethal simulated ischemia promotes delayed resistance against ischemia via ATP-sensitive (K+) channels in murine myocytes: role of PKC and iNOS. Antioxid Redox Signal 6:375–383

    Article  PubMed  CAS  Google Scholar 

  18. Weber NC, Toma O, Damla H, Wolter JI, Schlack W, Preckel B (2006) Upstream signaling of protein kinase C-ε in xenon-induced pharmacological preconditioning. Implication of mitochondrial adenosine triphosphate dependent potassium channels and phosphatidylinositol-dependent linase-1. Eur J Pharmacol 539:1–9

    Article  PubMed  CAS  Google Scholar 

  19. Mayanagi K, Gáspár T, Katakan PV, Busija DW (2007) Systemic administration of diazoxide induces delayed preconditioning against transient focal cerebral ischemia in rats. Brain Res 1168:106–111

    Article  PubMed  CAS  Google Scholar 

  20. Simerabet M, Robin E, Aristi I et al (2008) Preconditioning by an in situ administration of hydrogen peroxide: involvement of reactive oxygen species and mitochondrial ATP dependent potassium channel in a cerebral ischemia-reperfusion model. Brain Res 1240:177–184

    Article  PubMed  CAS  Google Scholar 

  21. Adamczyk S, Robin E, Simerabet M et al (2010) Sevoflurane pre- and post-conditioning protect the brain via the mitochondrial K ATP channel. Br J Anaesth 104:191–200

    Article  PubMed  CAS  Google Scholar 

  22. Liu Y, Xiong L, Chen S, Wang Q (2006) Isoflurane tolerance against focal cerebral ischemia is attenuated by adenosine A1 receptor antagonists. Can J Anaesth 53:194–201

    Article  PubMed  Google Scholar 

  23. Xiong LZ, Zheng Y, Wu MC, Hou LC, Zhu ZH, Zhang XJ (2003) Preconditioning with isoflurane produces dose-dependent neuroprotection via activation of mitochondrial adenosine triphosphate dependent potassium channels after focal cerebral ischemia in rats. Anesth Analg 96:233–237

    PubMed  CAS  Google Scholar 

  24. Zheng S, Zuo Z (2004) Isoflurane preconditioning induces neuroprotection against ischemia via activation of p38 mitogen-activated protein kinas. Mol Pharmacol 65:1172–1180

    Article  PubMed  CAS  Google Scholar 

  25. Belayev L, Alonso OF, Busto R, Zhao W, Ginsberg (1996) Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke 27:1616–1622

    Article  PubMed  CAS  Google Scholar 

  26. Williams AJ, Berti R, Dave JR (2004) Delayed treatment of ischemia/reperfusion brain injury extended therapeutic window with the proteosome inhibitor MLN519. Stroke 35:1186–1191

    Article  PubMed  CAS  Google Scholar 

  27. Hasegawa J, Takekoshi S, Nagata H, Osamura RY, Suzuki T (2006) Sevoflurane stimulates MAP kinase signal transduction through the activation of PKCα and β II in fetal rat cerebral cortex cultured neuron. Acta Histochem Cytochem 39:163–172

    Article  PubMed  CAS  Google Scholar 

  28. Wang C, Jin Lee J, Jung HH, Zuo Z (2007) Pretreatment with volatile anesthetics, but not with the nonimmobilizer 1,2-dichlorohexafluorocyclobutane, reduced cell injury in rat cerebellar slices after an in vitro simulated ischemia. Brain Res 1152:201–208

    Article  PubMed  CAS  Google Scholar 

  29. Wang Y, Hirai K, Ashraf M (1999) Activation of mitochondrial ATP-sensitive K+ channel for cardiac protection against ischemia injury is dependent on protein kinase C activity. Circ Res 85:731–741

    PubMed  CAS  Google Scholar 

  30. Wang Y, Ashraf M (1999) Role of protein kinase C in mitochondrial KATP-channel-mediated protection against Ca2+ overload injury in rat myocardium. Circ Res 84:1156–1165

    PubMed  CAS  Google Scholar 

  31. Fryer RM, Eells JT, Hsu AK (2000) Ischemic preconditioning in rats: role of mitochondrial KATP channel in preservation of mitochondrial function. Am J Physiol 278:H305–H312

    CAS  Google Scholar 

  32. Szewczyk A (1996) The ATP-regulated K+ channel in mitochondria: five years after its discovery. Acta Biochim Pol 43:713–720

    PubMed  CAS  Google Scholar 

  33. Janczewski AM, Sollot SJ, Spurgeon HA (1992) Mitochondrial free Ca2+ in single ventricular myocytes rapidly responds to changes in cytosolic Ca2+. Circulation 86:1–35

    Google Scholar 

  34. Zhou X, Zhai X, Ashraf M (1996) Direct evidence that initial oxidative stress triggered by preconditioning contributes to second window of protection by endogenous antioxidant enzyme in myocytes. Circulation 93:1177–1184

    PubMed  CAS  Google Scholar 

  35. Huang Y, Zuo Z (2005) Isoflurane induces a protein kinase C alpha-dependent increase in cell-surface protein level and activity of glutamate transporter type 3. Mol Pharmacol 67:1522–1533

    Article  PubMed  CAS  Google Scholar 

  36. Shimohata T, Zhao H, Steinberg GK (2007) ε PKC may contribute to the protective effect of hypothermia in a rat focal cerebral ischemia model. Stroke 38:375–380

    Article  PubMed  Google Scholar 

  37. Wang J, Bright R, Mochly RD (2004) Cell-specific role for epsilon and beta l protein kinase C isozymes in protecting cortical neurons and astrocytes from ischemia-like injury. Neuropharmacology 47:136–145

    Article  PubMed  CAS  Google Scholar 

  38. Ludwig LM, Weihrauch D, Kersten JR, Pagel PS, Warltier DC (2004) Protein kinase C translocation and Scr protein tyrosine kinase activation mediated isoflurane-induced preconditioning in vivo: potential downstream targets of mitochondrial adenosine triphosphate-sensitive potassium channels and reactive oxygen species. Anesthesiology 100:532–539

    Article  PubMed  CAS  Google Scholar 

  39. Ohnuma Y, Miura T, Miki T, Tanno M, Kuno A, Tsuchida A (2002) Opening of mitochondrial KATP channel occurs downstream of PKC-ε activation in the mechanism of preconditioning. Am J Physiol Heart Circ Physiol 283:H440–H447

    PubMed  CAS  Google Scholar 

  40. Raval AP, Dave KR, DeFazio RA, Perez-Pinzon MA (2007) εPKC phosphorylates the mitochondrial K+ ATP channel during induction of ischemic preconditioning in rat hippocampus. Brain Res 1184:345–353

    Article  PubMed  CAS  Google Scholar 

  41. Kevin LG, Novalija E, Riess ML, Camara AK, Rhodes SS, Stowe DF (2003) Sevoflurane exposure generates superoxide but leads to decreased superoxide during ischemia and reperfusion in isolated hearts. Anesth Analg 96:949–955

    Article  PubMed  CAS  Google Scholar 

  42. Zhang X, Xiong L, Hu WN, Zhang Y, Zhu ZH, Liu YH (2004) Preconditioning with prolonged oxygen exposure induces ischemic tolerance in the brain via radical formation. Can J Anaesth 51:258–263

    Article  PubMed  Google Scholar 

  43. Moritani K, Miyazaki T, Miyoshi S, Asanagi M, Zhao LS, Mitamura H, Ogawa S (1994) Blockade of ATP-sensitive potassium channels by 5-hydroxydecanoate suppresses monophasic action potential shortening during regional myocardial ischemia. Cardiovasc Drugs Ther 8:749–756

    Article  PubMed  CAS  Google Scholar 

  44. Riess ML, Novalija E, Camara AK, Eells JT, Chen Q, Stowe DF (2003) Preconditioning with sevoflurane reduces changes in nicotinamide adenine dinucleotide during ischemia–reperfusion in isolated hearts: reversal by 5-hydroxydecanoic acid. Anesthesiology 98:387–395

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qu-lian Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Z., Huang, Ym., Wang, E. et al. Sevoflurane-induced delayed neuroprotection involves mitoKATP channel opening and PKC ε activation. Mol Biol Rep 39, 5049–5057 (2012). https://doi.org/10.1007/s11033-011-1290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1290-4

Keywords

Navigation