Skip to main content
Log in

Molecular and biochemical analysis of the β class carbonic anhydrases in Caenorhabditis elegans

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The β class of the carbonic anhydrase (CA) enzyme family has been found in plants, yeast, bacteria and algae, but not in animals. Also, little is known concerning the CAs of C. elegans. Genes possibly encoding β-CAs were revealed by in silico analysis of the C. elegans genome. Amino acid sequence and 3D structure analysis revealed a resemblance to both plant and cab-type β-CAs. Temporal expression patterns of the two genes, as well as changes in expression levels under different atmospheric conditions (stress) were analyzed by real-time RT–PCR. Recombinant enzymes, expressed in E. coli were used for in vitro measurement of CA activity, while a yeast complementation experiment was performed in order to assess their ability to complement the function of S. crevisieae β-CA (NCE103) in vivo. RNAi by feeding was performed on wild-type populations that were then examined for a visible phenotype under normal or various stress conditions (pH, CO2/O2). Two genes possibly encoding β-CAs were revealed (bca-1 and y116a8c.28). Their products contain elements of both plant and cab-type CAs. Both assays showed that Y116a8c.28 is an active CA. Both genes showed significant levels of transcript accumulation during development, while they also responded to the stress conditions. No visible phenotype was scored under normal or stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tripp BC, Smith K, Ferry JG (2001) Carbonic anhydrase: new insights for an ancient enzyme. J Biol Chem 276:48615–48618

    Article  CAS  PubMed  Google Scholar 

  2. Liljas A, Laurberg M (2000) A wheel invented three times. EMBO J 1:16–17

    Article  CAS  Google Scholar 

  3. Esbaugh AJ, Tufts BL (2006) The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates. Respir Physiol Neurobiol 154:185–198

    Article  CAS  PubMed  Google Scholar 

  4. Rowlett RS (2009) Structure and catalytic mechanism of the β-carbonic anhydrases. Biochim Biophys Acta. doi:10.1016/j.bbapap.2009.08.002

    PubMed  Google Scholar 

  5. Linser PJ, Smith KE, Seron TJ, Oviedo MN (2009) Review: carbonic anhydrases and anion transport in mosquito midgut pH regulation. J Exp Biol 212:1662–1671

    Article  CAS  PubMed  Google Scholar 

  6. Elleuche SR, Pöggeler S (2009) Evolution of carbonic anhydrases in fungi. Curr Genet 55:211–222

    Article  CAS  PubMed  Google Scholar 

  7. Strop P, Smith KS, Iverson TM, Ferry JG, Rees DC (2001) Crystal structure of the “cab”-type β class carbonic anhydrase from the Archaeon Methanobacterium thermoautotrophicum. J Biol Chem 279:10299–10305

    Article  Google Scholar 

  8. Sterling D, Reithmeier RAF, Casey JR (2001) Carbonic anhydrase: in the driver’s seat for bicarbonate transport. JOP 2:165–170

    CAS  PubMed  Google Scholar 

  9. Supuran TC, Scozzafava A (2007) Carbonic anhydrases as targets for medicinal chemistry. Bioorg Med Chem 15:4336–4350

    Article  CAS  PubMed  Google Scholar 

  10. Innocenti A, Mόhlschlegel FA, Hall RA, Steegborn C, Scozzafava A, Supuran CT (2008) Carbonic anhydrase inhibitors: inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with simple anions. Bioorg Med Chem Lett 18:5066–5070

    Article  CAS  PubMed  Google Scholar 

  11. Elleuche S, Pöggeler S (2009) β-Carbonic anhydrases play a role in fruiting body development and ascospore germination in the filamentous fungus Sordaria macrospora. PLoS ONE 4(4):e5177

    Article  PubMed  Google Scholar 

  12. Innocenti A, Hall RA, Schlicker C, Scozzafava A, Steegborn C, Mόhlschlegel FA, Supuran CT (2009) Carbonic anhydrase inhibitors. Inhibition and homology modeling studies of the fungal b-carbonic anhydrase from Candida albicans with sulfonamides. Bioorg Med Chem 17:4503–4509

    Article  CAS  PubMed  Google Scholar 

  13. Innocenti A, Leewattanapasuk W, Mόhlschlegel FA, Mastrolorenzo A, Supuran CT (2009) Carbonic anhydrase inhibitors. Inhibition of the b-class enzyme from the pathogenic yeast Candida glabrata with anions. Bioorg Med Chem Lett 19:4802–4805

    Article  CAS  PubMed  Google Scholar 

  14. Schlicker C, Hall RA, Vullo D, Middelhaufe S, Gertz M, Supuran CT, Mühlschlegel FA, Steegborn C (2009) Structure and inhibition of the CO2-sensing carbonic anhydrase Can2 from the pathogenic fungus Cryptococcus neoformans. J Mol Biol 385:1207–1220

    Article  CAS  PubMed  Google Scholar 

  15. Simmer F, Moorman C, van der Linden AM, Kuijk E, van den Berghe PVE et al (2003) Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol 1:e12

    Article  PubMed  Google Scholar 

  16. Wormbase WS193 (2008) http://ws193.wormbase.org/. Accessed 21 Aug 2008

  17. DeRosa AA, Chirgwin SR, Williams JC, Klei TR (2008) Isolation and characterization of a gene encoding carbonic anhydrase from Ostertagia ostertagi and quantitative measurement of expression during in vivo exsheathment. Vet Parasitol 154:58–66

    Article  CAS  PubMed  Google Scholar 

  18. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  19. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  20. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  Google Scholar 

  21. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723

    Article  CAS  PubMed  Google Scholar 

  22. Stiernagle T (2006) Maintenance of C. elegans, Wormbook (ed). The C. elegans Research Community, Wormbook. doi: 10.1895/wormbook.1.101.1. http://www.wormbook.org

  23. Sasagawa Y, Urano T, Kohara Y, Takahashi H, Higashitani A (2003) Caenorhabditis elegans RBX1 is essential for meiosis, mitotic chromosomal condensation and segregation, and cytokinesis. Genes Cells 8:857–872

    Article  CAS  PubMed  Google Scholar 

  24. Flemetakis E, Efrose RC, Ott T, Stedel C, Aivalakis G et al (2006) Spatial and temporal organization of sucrose metabolism in Lotus japonicus nitrogen-fixing nodules suggests a role for the elusive alkaline/neutral invertase. Plant Mol Biol 62:53–69

    Article  CAS  PubMed  Google Scholar 

  25. Götz R, Gnann A, Zimmermann FZ (1999) Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast 15:855–864

    Article  PubMed  Google Scholar 

  26. Khalifah RG (1971) The carbon dioxide hydration activity of carbonic anhdrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 246:2561–2573

    CAS  PubMed  Google Scholar 

  27. Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2000) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2:1–10

    Article  Google Scholar 

  28. Guilloton MB, Korte JJ, Lamblin AF, Fuchs JA, Anderson PM (1992) Carbonic anhydrase in Escherichia coli. A product of the cyn operon. J Biol Chem 267:3731–3734

    CAS  PubMed  Google Scholar 

  29. Weber AK, Pirow R (2009) Physiological responses of Daphnia pulex to acid stress. BMC Physiol 9:9

    Google Scholar 

  30. Hall RA, Vullo D, Innocenti A, Scozzafava A, Supuran CT et al (2008) External pH influences the transcriptional profile of the carbonic anhydrase, CAH-4b in Caenorhabditis elegans. Mol Biochem Parasitol 161:140–149

    Article  CAS  PubMed  Google Scholar 

  31. Hallem EA, Sternberg PW (2008) Acute carbon dioxide avoidance in Caenorhabditis elegans. PNAS 105:8038–8043

    Article  CAS  PubMed  Google Scholar 

  32. Bretscher AJ, Busch KE, de Bono M (2008) A carbon dioxide avoidance behaviour is integrated with responses to ambient oxygen and food in Caenorhabditis elegans. PNAS 105:8044–8049

    Article  CAS  PubMed  Google Scholar 

  33. Petronijevic T, Rogers WP, Sommerville RI (1985) Carbonic acid as the host signal for the development of parasitic stages of nematodes. Int J Parasitol 15:661–667

    Article  CAS  PubMed  Google Scholar 

  34. Van Voorhies WA, Ward S (2000) Broad oxygen tolerance in the nematode Caerorhabditis elegans. J Exp Biol 203:2467–2478

    PubMed  Google Scholar 

  35. Föll RL, Pleyers A, Lewandovski GJ, Wermter C, Hegemann V et al (1999) Anaerobiosis in the nematode Caenorhabditis elegans. Comp Biochem Physiol 124:269–280

    Article  Google Scholar 

  36. Clark D, Rowlett RS, Coleman JR, Klessig DF (1999) Complementation of the yeast deletion mutant ΔNCE103 by members of the β class of carbonic anhydrases is dependent on carbonic anhydrase activity rather that on antioxidant activity. Biochem J 379:609–615

    Article  Google Scholar 

  37. Sly SW, Hu PY (1995) Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 64:375–401

    Article  CAS  PubMed  Google Scholar 

  38. Kim G, Lee TH, Wetzel P, Geers C, Robinson MA, et al (2004) Carbonic anhydrase III is not required in the mouse for normal growth, development, and life span. Mol Cell Biol 24:9942–9947

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Y. Kohara from the Kohara Laboratory (NIG, Japan) for providing the cDNA clones yk832 and yk1390. We also thank Dr. N. Tavernarakis from the Tavernarakis Lab (IMBB, Greece) for his assistance and for providing the C. elegans strain N2, the E. coli strains OP50 and HT115 and the pL4440 vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Katinakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fasseas, M.K., Tsikou, D., Flemetakis, E. et al. Molecular and biochemical analysis of the β class carbonic anhydrases in Caenorhabditis elegans . Mol Biol Rep 37, 2941–2950 (2010). https://doi.org/10.1007/s11033-009-9857-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9857-z

Keywords

Navigation