Skip to main content

Advertisement

Log in

Two novel transcripts encoding two Ankyrin repeat containing proteins have preponderant expression during the mouse spermatogenesis

  • Original Paper
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The clone 4921537P18 expressed preponderantly in mouse testis was identified by screening the Riken cDNA database, and two new full-length isoforms of this clone, which were named gsarp1 (Gonad Specific Ankyrin Repeat (ANK) Protein 1) and gsarp2, were found and isolated from mouse testis in the course of the research. Both of the GSARP1 and GSARP2 contain an ANK region circular composed by seven ANKs, and their structural feature is very similar to that of the IκB family proteins, while IκB proteins associate with the transcription factor NF-κB via their ANKs in the NF-κB pathway. We investigated the expression pattern at the mRNA level by Reverse transcription PCR. The gsarp1 has high expression level in mouse testis, while has low expression level in the ovary, and the gsarp2 is only expressed in mouse testis. The gsarp1 and gsarp2 begin to be detected at the early and later pachytene stage of meiosis separately, while both have high-expression level at the stage of MI and MII. The result of in situ hybridization reveals that the gsarp1 is primarily expressed in spermatocytes, while gsarp2 is expressed in spermatocytes and spermatids. In view of the structural feature and expression pattern of the GSARP1 and GSARP2, we speculate that they may play a certain role in a signal pathway of meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bork P (1993) Proteins Struct Funct Genet 17:363–374

    Article  PubMed  CAS  Google Scholar 

  2. Lux SE, John KM, Bennett V (1990) Nature 344:36–42

    Article  PubMed  CAS  Google Scholar 

  3. Andrade MA, Perez-Iratxeta C, Ponting CP (2001) J Struct Biol 134:117–131

    Article  PubMed  CAS  Google Scholar 

  4. Sedgwick SG, Smerdon SJ (1999) Trends Biochem Sci 24:311–316

    Article  PubMed  CAS  Google Scholar 

  5. Bennett V (1992) J Biol Chem 267:8703–8706

    PubMed  CAS  Google Scholar 

  6. Bennett V, Gilligan DM (1993) Annu Rev Cell Biol 9:27–66

    Article  PubMed  CAS  Google Scholar 

  7. De Matteis MA, Morrow JS (1998) Curr Opin Cell Biol 10:542–549

    Article  PubMed  Google Scholar 

  8. Thompson CC, Brown TA, McKnight SL (1991) Science 253:762–768

    Article  PubMed  CAS  Google Scholar 

  9. Blank V, Kourilsky P, Israel A (1991) EMBO J 10:4159–4167

    PubMed  CAS  Google Scholar 

  10. Blank V, Kourilsky P, Israel A (1992) Trends Biochem Sci 17:135–140

    Article  PubMed  CAS  Google Scholar 

  11. Michaely P, Bennett V (1995) J Biol Chem 270:22050–22057

    Article  PubMed  CAS  Google Scholar 

  12. Gorina S, Pavletich NP (1996) Science 274:1001–1005

    Article  PubMed  CAS  Google Scholar 

  13. Baumgartner R, Fernandez-Catalan C, Winoto A, Huber R, Engh RA, Holak TA (1998) Structure 6:1279–1290

    Google Scholar 

  14. Li J, Byeon IJ, Ericson K, Poi MJ, O’Maille P, Selby T, Tsai MD (1999) Biochemistry 38:2930–2940

    Article  PubMed  CAS  Google Scholar 

  15. Bell S, Matthews JR, Jaffray E, Hay RT (1996) Mol Cell Biol 16:6477–6485

    PubMed  CAS  Google Scholar 

  16. Batchelor AH, Piper DE, de la Brousse FC, McKnight SL, Wolberger C (1998) Science 279:1037–1041

    Article  PubMed  CAS  Google Scholar 

  17. Gorina S, Pavletich NP (1996) Science 274:1001–1005

    Article  PubMed  CAS  Google Scholar 

  18. Batchelor AH, Piper DE, de la Brousse FC, McKnight SL, Wolberger C (1998) Science 279:1037–1041

    Article  PubMed  CAS  Google Scholar 

  19. Baeuerle PA (1998) Curr Biol 8:R19–R22

    Article  PubMed  CAS  Google Scholar 

  20. Ghosh S, May MJ, Kopp EB (1998) Annu Rev Immunol 16:225–260

    Article  PubMed  CAS  Google Scholar 

  21. Vogel T, Speed RM, Ross A, Cooke HJ (2002) Mol Hum Reprod 8:797–804

    Article  PubMed  CAS  Google Scholar 

  22. Thompson JD, Higgins DG, Gibson TJ (1994) Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  23. Cai H, Hu J, Song P, Gong W, Guo M (2006) Mol Biol Rep 33(3):159–166

    Article  PubMed  CAS  Google Scholar 

  24. Gu S, Hu J, Song P, Gong W, Guo M (2005) Mol Biol Rep 32(4):247–255

    Article  PubMed  CAS  Google Scholar 

  25. Frohman MA, Dush MK, Martin GR (1988) Proc Natl Acad Sci 85:8998–9002

    Article  PubMed  CAS  Google Scholar 

  26. Song P, Malhotra P, Tuteja N, Chauhan VS (1999) Biochem Biophys Res Commun 255:312–316

    Article  PubMed  CAS  Google Scholar 

  27. Lv D, Song P, Chen Y, Gong W, Mo S (2005) Biochem Biophys Res Commun 329(2):632–637

    Article  PubMed  CAS  Google Scholar 

  28. Bellve AR, Cavicchia JC, Millette CF, et al (1977) J Cell Biol 74:68–85

    Article  PubMed  CAS  Google Scholar 

  29. Toshima J, Koji T, Mizuno K (1998) Biochem Biophys Res Commun 249:107–112

    Article  PubMed  CAS  Google Scholar 

  30. Davis JQ, Bennett V (1990) J Biol Chem 265:17252–17256

    PubMed  CAS  Google Scholar 

  31. Franzoso G, Bours V, Park S, Tomita-Yamaguchi M, Kelly K, Siebenlist U (1992) Nature 359:339–342

    Article  PubMed  CAS  Google Scholar 

  32. Wulczyn FG, Naumann M, Scheidereit C (1992) Nature 358:597–599

    Article  PubMed  CAS  Google Scholar 

  33. Thompson JE, Philips RJ, Erdjument-Bromage H, Tempst P, Ghosh S (1995) Cell 80:573–582

    Article  PubMed  CAS  Google Scholar 

  34. Franzoso G, Bours V, Azarenko V, Park S, Tomita-Yamaguchi M, Kanno T, Brown K, Siebenlist U (1993) EMBO J 12:3893–3901

    PubMed  CAS  Google Scholar 

  35. Inoue J, Takahara T, Akizawa T, Hino O (1993) Oncogene 8:2067–2073

    PubMed  CAS  Google Scholar 

  36. Bours V, Franzoso G, Azarenko V, Park S, Kanno T, Brown K, Siebenlist U (1993) Cell 72:729–739

    Article  PubMed  CAS  Google Scholar 

  37. Fujita T, Nolan GP, Liou HC, Scott ML, Baltimore D (1993) Genes Dev 7:1354–1363

    Article  PubMed  CAS  Google Scholar 

  38. Huxford T, Huang DB, Malek S, Ghish G (1998) Cell 95:759–770

    Article  PubMed  CAS  Google Scholar 

  39. Michel F, Soler-Lopez M, Petosa C, Cramer P, Siebenlist U, Muller CM (2001) EMBO J 20:6180–6190

    Article  PubMed  CAS  Google Scholar 

  40. Evans GJO, Morgan A (2003) Biochem Soc Trans 31(4):824–827

    Article  PubMed  CAS  Google Scholar 

  41. Rechsteiner M, Rogers SW (1996) Trends Biochem Sci 21:267–271

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the ICGEB International Center for Genetic Engineering and Biotechnology (ICGEB) (CRP/CHNO2-01), the National Basic Research Program of China (No. 2004CB117400), and the National Natural Science Foundation of China (No. 00510494; No. 30270675).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Song.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Hu, J., Song, P. et al. Two novel transcripts encoding two Ankyrin repeat containing proteins have preponderant expression during the mouse spermatogenesis. Mol Biol Rep 34, 249–260 (2007). https://doi.org/10.1007/s11033-006-9039-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-006-9039-1

Keywords

Navigation