Skip to main content
Log in

Cytological and genetic effects of rye chromosomes 1RS and 3R on the wheat-breeding founder parent Chuanmai 42 from southwestern China

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Rye (Secale cereale L.) is an important genetic resource for improving the disease resistance of wheat. An increasing number of rye chromosome segments have been transferred into modern wheat cultivars via chromatin insertions. In this study, 185 recombinant inbred lines (RILs) derived from a cross between a wheat accession containing rye chromosomes 1RS and 3R and a wheat-breeding founder parent Chuanmai 42 from southwestern China were used to decipher the cytological and genetic effects of 1RS and 3R via fluorescence/genomic in situ hybridization and quantitative trait locus (QTL) analyses. Chromosome centromere breakage and fusion were detected in the RIL population. Additionally, the recombination of chromosomes 1BS and 3D from Chuanmai 42 was completely suppressed by 1RS and 3R in the RIL population. In contrast to chromosome 3D of Chuanmai 42, rye chromosome 3R was significantly associated with white seed coats and decreased yield-related traits, as revealed by QTL and single marker analyses, whereas it had no effect on stripe rust resistance. Rye chromosome 1RS did not affect yield-related traits and it increased the susceptibility of plants to stripe rust. Most of the detected QTLs that positively affected yield-related traits were from Chuanmai 42. The findings of this study suggest that the negative effects of rye-wheat substitutions or translocations, including the suppression of the pyramiding of favorable QTLs on paired wheat chromosomes from different parents and the transfer of disadvantageous alleles to filial generations, should be considered when selecting alien germplasm to enhance wheat-breeding founder parents or to breed new varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data is enclosed either in the main text or as supplementary data. Other data can be requested from the corresponding author.

Code availability

Not applicable.

Abbreviations

CAPS:

Cleaved amplified polymorphic sequence

FISH:

Fluorescence in situ hybridization

GISH:

Genomic in situ hybridization

GNP:

Grain number per spike

GWP:

Grain weight per spike

ICIM:

Inclusive composite interval mapping

IT:

Infection type

PH:

Plant height

QTL:

Quantitative trait locus

RIL:

Recombinant inbred line

SCC:

Seed coat color

SN:

Effective spike number per plant

SNP:

Single nucleotide polymorphism

SR:

Stripe rust resistance

SSR:

Simple-sequence repeat

TGW:

Thousand-grain weight

YLD:

Grain yield per plant

References

  • Allan RE (1989) Agronomic comparisons between Rht1 and Rht2 semi-dwarf genes in winter wheat. Crop Sci 29:1103–1108

    Article  Google Scholar 

  • An D, Ma P, Zheng Q, Fu S, Li L, Han F, Han G, Wang J, Xu Y, Jin Y, Luo Q, Zhang X (2019) Development and molecular cytogenetic identification of a new wheat-rye 4R chromosome disomic addition line with resistances to powdery mildew, stripe rust and sharp eyespot. Theor Appl Genet 132(1):257–272

    Article  CAS  PubMed  Google Scholar 

  • Arif MAR, Komyshev EG, Genaev MA, Koval VS, Shmakov NA, Börner A, Afonnikov DA (2022) QTL analysis for bread wheat seed size, shape and color characteristics estimated by digital image processing. Plants 11:2105

    Article  PubMed  PubMed Central  Google Scholar 

  • Bansal UK, Hayden MJ, Keller B, Wellings CR, Park RF, Bariana HS (2009) Relationship between wheat rust resistance genes Yr1 and Sr48 and a microsatellite marker. Plant Pathol 58:1039–1043

    Article  CAS  Google Scholar 

  • Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012a) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271

    Article  PubMed  Google Scholar 

  • Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T (2012b) Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor Appl Genet 125:1473–1485

    Article  PubMed  Google Scholar 

  • Börner A, Korzun V, Voylokov AV, Worland AJ, Weber WE (2000) Genetic mapping of quantitative trait loci in rye (Secale cereale L.). Euphytica 116:203–209

    Article  Google Scholar 

  • Carver BF, Rayburn AL (1994) Comparison of related wheat stocks possessing 1B or 1RS.1BL chromosomes: agronomic performance. Crop Sci 34:1505–1510

    Article  Google Scholar 

  • Chen C, He ZH, Lu JL, Li J, Ren Y, Ma CX, Xia XC (2016) Molecular mapping of stripe rust resistance gene YrJ22 in Chinese wheat cultivar Jimai 22. Mol Breed 36:118

    Article  Google Scholar 

  • Chen S, Chen P, Wang X (2008) Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line. Sci China C Life Sci 51:346–352

    Article  PubMed  Google Scholar 

  • Czyczyło-Mysza I, Marcińska I, Skrzypek E, Chrupek M, Grzesiak S, Hura T, Stojałowski S, Myśków B, Milczarski P, Quarrie S (2011) Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability. Plant Genet Res 9:291–295

    Article  Google Scholar 

  • Danilova TV, Friebe B, Gill BS, Poland J, Jackson E (2018) Chromosome rearrangements caused by double monosomy in wheat-barley group-7 substitution lines. Cytogenet Genome Res 154(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Eriksen L, Afshari F, Christiansen MJ, McIntosh RA, Jahoor A, Wellings CR (2004) Yr32 for resistance to stripe (yellow) rust present in the wheat cultivar Carstens V. Theor Appl Genet 108:567–575

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Hao M, Jia Z, Neri C, Chen X, Chen W, Liu D, Lukaszewski AJ (2021) Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye. Plant J 105:1665–1676

    Article  CAS  PubMed  Google Scholar 

  • Friebe B, Heun M, Tuleen N, Zeller FJ, Gill BS (1994) Cytogenetically monitored transfer of powdery mildew resistance from rye into wheat. Crop Sci 34:621–625

    Article  Google Scholar 

  • Fu S, Ren Z, Chen X, Yan B, Tan F, Fu T, Tang Z (2014) New wheat-rye 5DS-4RS·4RL and 4RS-5DS·5DL translocation lines with powdery mildew resistance. J Plant Res 127:743–753

    Article  CAS  PubMed  Google Scholar 

  • Graybosch RA, Peterson CJ, Hansen LE, Worrall D, Shelton DR, Lukaszewski A (1993) Comparative flour quality and protein characteristics of 1BL/1RS and 1AL/1RS wheat-rye translocation. J Cereal Sci 17:95–106

    Article  CAS  Google Scholar 

  • Hackauf B, Haffke S, Fromme FJ, Roux SR, Kusterer B, Musmann D, Kilian A, Miedaner T (2017) QTL mapping and comparative genome analysis of agronomic traits including grain yield in winter rye. Theor Appl Genet 130:1801–1817

    Article  CAS  PubMed  Google Scholar 

  • Han FP, Lamb JC, Birchler JA (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103:3238–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao M, Liu M, Luo J, Fan C, Yi Y, Zhang L, Yuan Z, Ning S, Zheng Y, Liu D (2018) Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front Plant Sci 9:1040

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidari B, Sayed-Tabatabaei BE, Saeidi G, Kearsey M, Suenaga K (2011) Mapping QTL for grain yield, yield components, and spike features in a doubled haploid population of bread wheat. Genome 54:517–527

    Article  PubMed  Google Scholar 

  • Himi E, Maekawa M, Miura H, Noda K (2011) Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor Appl Genet 122(8):1561–1576

    Article  CAS  PubMed  Google Scholar 

  • Howell T, Hale I, Jankuloski L, Bonafede M, Gilbert M, Dubcovsky J (2014) Mapping a region within the 1RS.1BL translocation in common wheat affecting grain yield and canopy water status. Theor Appl Genet 127:2695–2709

  • Hsam SLK, Zeller FJ (1997) Evidence of allelism between genes Pm8 and Pm17 and chromosomal location of powdery mildew and leaf rust resistance genes in the common wheat cultivar Amigo. Plant Breed 116:119–122

    Article  Google Scholar 

  • Hu Z (2020) Identification of new FISH karyotypes of Sichuan wheat (Triticum aestivum L.) varieties. A Thesis for Master Degree, Sichuan Agricultural University, Chengdu, pp52

  • Ji Y, Chetelat RT (2003) Homoeologous pairing and recombination in Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor Appl Genet 106:979–989

    Article  CAS  PubMed  Google Scholar 

  • Khazan S, Minz-Dub A, Sela H, Manisterski J, Ben-Yehuda P, Sharon A, Millet E (2020) Reducing the size of an alien segment carrying leaf rust and stripe rust resistance in wheat. BMC Plant Biol 20:153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong L, Ohm HW, Cambron SE, Williams CE (2005) Molecular mapping determines that Hessian fly resistance gene H9 is located on chromosome 1A of wheat. Plant Breeding 124:525–531

    Article  CAS  Google Scholar 

  • Lang J, Fu Y, Zhou Y, Cheng M, Deng M, Li M, Zhu T, Yang J, Guo X, Gui L, Li L, Chen Z, Yi Y, Zhang L, Hao M, Huang L, Tan C, Chen G, Jiang Q, Qi P, Pu Z, Ma J, Liu Z, Liu Y, Luo MC, Wei Y, Zheng Y, Wu Y, Liu D, Wang J (2021) Myb10-D confers PHS-3D resistance to pre-harvest sprouting by regulating NCED in ABA biosynthesis pathway of wheat. New Phytol 230(5):1940–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, Wang L, Yang J, He H, Jin H, Li X, Ren T, Ren Z, Li F, Han X, Zhao X, Dong L, Li Y, Song Z, Yan Z, Zheng N, Shi C, Wang Z, Yang S, Xiong Z, Zhang M, Sun G, Zheng X, Gou M, Ji C, Du J, Zheng H, Doležel J, Deng XW, Stein N, Yang Q, Zhang K, Wang D (2021) A high-quality genome assembly highlights rye genomic characteristics and agronomically important genes. Nat Genet 53:574–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li GQ, Li ZF, Yang WY, Zhang Y, He ZH, Xu SC, Singh RP, Qu YY, Xia XC (2006a) Molecular mapping of stripe rust resistance gene YrCH42 in Chinese wheat cultivar Chuanmai 42 and its allelism with Yr24 and Yr26. Theor Appl Genet 112(8):1434–1440

    Article  CAS  PubMed  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li J, Wan HS, Yang WY (2014) Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J Syst Evol 52:735–742

    Article  Google Scholar 

  • Li J, Zhu X, Wan H, Wang Q, Tang Z, Fu S, Yang Z, Yang M, Yang W (2015) Identification of the 1RS-7DS.7DL wheat-rye small segment translocation lines. Hereditas (beijing) 37:590–598 (in Chinese with English abstract)

    CAS  Google Scholar 

  • Li QC, Huang L, Li YZ, Fan CL, Xie D, Zhao LB, Zhang SJ, Chen XJ, Ning SZ, Yuan ZW, Zhang LQ, Liu DC (2020) Genetic stability of wheat-rye 6RS/6AL translocation chromosome and its transmission through gametes. Acta Agron Sin 46:513–519 (in Chinese with English abstract)

    Article  Google Scholar 

  • Li Z, Ren T, Yan B, Tan F, Yang M, Ren Z (2016) A mutant with expression deletion of gene Sec-1 in a 1RS.1BL line and its effect on production quality of wheat. PLoS ONE 11:e0146943

  • Li ZF, Zheng TC, He ZH, Li GQ, Xu SC, Li XP, Yang GY, Singh RP, Xia XC (2006b) Molecular tagging of stripe rust resistance gene YrZH84 in Chinese wheat line Zhou 8425B. Theor Appl Genet 112:1098–1103

    Article  CAS  PubMed  Google Scholar 

  • Liao X, Pu Z, Yang W (1999) Crossability of common wheat line 86–741 with rye. J Yunnan Agric Univ 14(1):37–39 (in Chinese with English abstract)

    Google Scholar 

  • Liao XZ, Wang J, Zhou RH, Ren ZL, Jia JZ (2008) Mining favorable alleles of QTLs conferring thousand-grain weight from synthetic wheat. Acta Agron Sin 34(11):1877–1884 (in Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Liu H, Tang H, Ding P, Mu Y, Habib A, Liu Y, Jiang Q, Chen G, Kang H, Wei Y, Zheng Y, Lan X, Ma J (2020) Effects of the 1BL/1RS translocation on 24 traits in a recombinant inbred line population. Cereal Res Commun 48:225–232

    Article  CAS  Google Scholar 

  • Liu J, Chang Z, Zhang X, Yang Z, Li X, Jia J, Zhan H, Guo H, Wang J (2013) Putative Thinopyrum intermedium-derived stripe rust resistance gene Yr50 maps on wheat chromosome arm 4BL. Theor Appl Genet 126:265–274

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Liu X, Qu Y, Jiang B, Song W, Yang X, Song Q, Li J, Zhang Y (2018) Identification of molecular cytogenetics for new germplasm of little fragment in wheat-rye translocation lines. Mol Plant Breed 16(7):2380–2388 (in Chinese with English abstract)

    Google Scholar 

  • Lukaszewski AJ (2003) Registration of six germplasms of bread wheat having variations of cytogenetically engineered wheat-rye translocation 1RS.1BL. Crop Sci 43(3):1137–1138

  • Masojć P, Banek-Tabor A, Milczarski P, Twardowska M (2007) QTLs for resistance to preharvest sprouting in rye (Secale cereale L.). J Appl Genet 48(3):211–217

  • Masojć P, Kruszona P, Bienias A, Milczarski P (2020) A complex network of QTL for thousand-kernel weight in the rye genome. J Appl Genet 61:337–348

  • Masojć P, Milczarski P (2009) Relationship between QTLs for preharvest sprouting and alpha-amylase activity in rye grain. Mol Breed 23:75–84

  • Masoudi-Nejad A, Nasuda S, McIntosh RA, Endo TR (2002) Transfer of rye chromosome segments to wheat by a gametocidal system. Chrom Res 10(5):349–357

    Article  CAS  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 x ‘AC Domain.’ Genome 48:870–883

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Miedaner T, Haffke S, Siekmann D, Fromme FJ, Roux SR, Hackauf B (2018) Dynamic quantitative trait loci (QTL) for plant height predict biomass yield in hybrid rye (Secale cereale L.). Biomass Bioenerg 115:10–18

    Article  CAS  Google Scholar 

  • Miedaner T, Hübner M, Korzun V, Schmiedchen B, Bauer E, Haseneyer G, Wilde P, Reif JC (2012) Genetic architecture of complex agronomic traits examined in two testcross populations of rye (Secale cereale L.). BMC Genomics 13:706

  • Myśków B, Czyczyło-Mysza I, Sokołowska S, Stojałowski S (2018) QTL analysis of moderate drought response in a rye recombinant inbred line (RIL) population shows co-localization of QTLs for morphological and physiological traits. Acta Biol Cracoviensia Ser Bot 60(2):59–67

    Google Scholar 

  • Nagy ED, Chu Y, Guo Y, Khanal S, Tang S, Li Y, Dong WB, Timper P, Taylor C, Ozias-Akins P, Holbrook CC, Beilinson V, Nielsen NC, Stalker HT, Knapp SJ (2010) Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed 26:357–370

    Article  CAS  Google Scholar 

  • Qu P, Wang J, Wen W, Gao F, Liu J, Xia X, Peng H, Zhang L (2021) Construction of consensus genetic map with applications in gene mapping of wheat (Triticum aestivum L.) using 90K SNP array. Front Plant Sci 25(12):727077

  • Ren RS, Wang MN, Chen XM, Zhang ZJ (2012) Characterization and molecular mapping of Yr52 for high-temperature adult-plant resistance to stripe rust in spring wheat germplasm PI183527. Theor Appl Genet 125:847–857

    Article  CAS  PubMed  Google Scholar 

  • Ren T, Li Z, Yan B, Tan F, Tang Z, Fu S, Yang M, Ren Z (2017) Targeted segment transfer from rye chromosome 2R to wheat chromosomes 2A, 2B, and 7B. Cytogenet Genome Res 151(1):50–59

    Article  CAS  PubMed  Google Scholar 

  • Ren TH, Yang ZJ, Yan BJ, Zhang HQ, Fu SL, Ren ZL (2009) Development and characterization of a new 1BL.1RS translocation line with resistance to stripe rust and powdery mildew of wheat. Euphytica 169:207–213

    Article  Google Scholar 

  • Schlegel R, Meinel A (1994) A quantitative trait locus (QTL) on chromosome arm 1RS of rye and its effect on yield performance of hexaploid wheat. Cereal Res Commun 22:7–13

    Google Scholar 

  • Singh RP, Nelson JC, Sorrells ME (2000) Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci 40:1148–1155

    Article  CAS  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot x Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    Article  CAS  PubMed  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4(1):12–25

  • Sun L, Yang W, Li Y, Shan Q, Ye X, Wang D, Yu K, Lu W, Xin P, Pei Z, Guo X, Liu D, Sun J, Zhan K, Chu J, Zhang A (2019) A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J 97:887–900

    Article  CAS  PubMed  Google Scholar 

  • Tahmasebi S, Heidari B, Pakniyat H, Dadkhodaie A (2015) Consequences of 1BL/1RS translocation on agronomic and physiological traits in wheat. Cereal Res Commun 43(4):554–566

    Article  CAS  Google Scholar 

  • Tang HJ, Yin GH, Xia XC, Feng JJ, Qu YY, He ZH (2009) Evaluation of molecular markers specific for 1BL·1RS translocation and characterization of 1RS chromosome in wheat varieties from different origins. Acta Agron Sin 35(11):2107–2115 (In Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55(3):313–318

  • Villareal RL, Bañuelos O, Mujeeb-Kazi A, Rajaram S (1998) Agronomic performance of chromosomes 1B and T1BL.1RS near-isolines in the spring bread wheat Seri M82. Euphytica 103:195–202

    Article  Google Scholar 

  • Wan H, Yang F, Li J, Wang Q, Liu Z, Tang Y, Yang W (2023) Genetic improvement and application practices of synthetic hexaploid wheat. Genes 14:283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan H, Yang Y, Li J, Zhang Z, Yang W (2015) Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat. Euphytica 205:275–285

    Article  Google Scholar 

  • Wang H, Bai Y, Li JL, Zhang YM (2014a) Molecular cytogenetic analysis of wheat-rye small fragment translocation lines. J Plant Genet Res 15(2):383–388 (in Chinese with English abstract)

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J; International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014b) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796

  • Wang Y, Xie J, Zhang H, Guo B, Ning S, Chen Y, Lu P, Wu Q, Li M, Zhang D, Guo G, Zhang Y, Liu D, Zou S, Tang J, Zhao H, Wang X, Li J, Yang W, Cao T, Yin G, Liu Z (2017) Mapping stripe rust resistance gene YrZH22 in Chinese wheat cultivar Zhoumai 22 by bulked segregant RNA-Seq (BSR-Seq) and comparative genomics analyses. Theor Appl Genet 130:2191–2201

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Huang S, Zeng Q, Liu S, Wang Q, Mu J, Yu S, Han D, Kang Z (2018a) Comparative genome-wide mapping versus extreme pool-genotyping and development of diagnostic SNP markers linked to QTL for adult plant resistance to stripe rust in common wheat. Theor Appl Genet 131:1777–1792

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Zeng Q, Wang Q, Liu S, Yu S, Mu J, Huang S, Sela H, Distelfeld A, Huang L, Han D, Kang Z (2018b) SNP-based pool genotyping and haplotype analysis accelerate fine-mapping of the wheat genomic region containing stripe rust resistance gene Yr26. Theor Appl Genet 131(7):1481–1496

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Ben-David R, Zeng B, Dinoor A, Xie C, Sun Q, Röder MS, Fahoum A, Fahima T (2012) Suppressed recombination rate in 6VS/6AL translocation region carrying the Pm21 locus introgressed from Haynaldia villosa into hexaploid wheat. Mol Breed 29:399–412

    Article  CAS  Google Scholar 

  • Yang E, Li J, Yang WY, Zou YC (2011) Agronomic traits and utilization of large-spike and high-yield dwarf wheat breeding parent SW3243. Agric Sci Technol 11(2):283–286

    Google Scholar 

  • Yang E, Tang Z, Li J, Yang W, Zou Y (2010) Molecular and cytogenetics identification of alien chromation in dwarf, large spike and high yielding potential wheat breeding parent SW3243. J Triticeae Crops 30:796–800 (In Chinese with English abstract)

    CAS  Google Scholar 

  • Yang M, Li G, Wan H, Li L, Li J, Yang W, Pu Z, Yang Z, Yang E (2019) Identification of QTLs for stripe rust resistance in a recombinant inbred line population. Int J Mol Sci 20(14):3410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang MY, Wang Q, Tang ZX, Yang EN (2021) Development of new wheat materials with chromosome structural variation by using recombinant inbred line containing 5BS·7BS/5BL·7BL reciprocal translocation chromosomes. Southwest Chi J Agric Sci 34(10):2063–2069 (In Chinese with English abstract)

    Google Scholar 

  • Zhai H, Feng Z, Li J, Liu X, Xiao S, Ni Z, Sun Q (2016) QTL Analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front Plant Sci 7:1617

  • Zhang WJ, Zhang XQ, Jing JK, Hu H (1998) The behavior of rye chromosome 6R at meiosis in wheat background. Acta Genet Sin 25(1):54–58 (In Chinese with English abstract)

    Google Scholar 

  • Zhao C, Cui F, Wang X, Shan S, Li X, Bao Y, Wang H (2012) Effects of 1RS/1BL translocation in wheat on agronomic performance and quality characteristics. Field Crops Res 127:79–84

    Article  Google Scholar 

  • Zhao DH, Yan J, Huang YL, Xia XC, Zhang Y, Tian YB, He ZH, Zhang Y (2015) Effect of 1BL/1RS translocation on gluten protein fraction quantities and dough rheological properties. Acta Agron Sin 41(11):1648–1656 (In Chinese with English abstract)

    Article  CAS  Google Scholar 

  • Zhou Y, He ZH, Zhang GS, Xia LQ, Chen XM, Gao YC, Jing ZB, Yu GJ (2004) Utilization of 1BL/1RS translocation in wheat breeding in China. Acta Agron Sin 30(6):531–535 (In Chinese with English abstract)

    CAS  Google Scholar 

  • Zhu T, Wang L, Rimbert H, Rodriguez JC, Deal KR, De Oliveira R, Choulet F, Keeble-Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu YQ, Mascher M, Dvorak J, Luo MC (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chin Spring Genome Assembly Plant J 107(1):303–314

    CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the support from Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China (Ministry of agriculture and rural affairs of the PRC) and Environment-friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Crop Research Institute of Sichuan Academy of Agricultural Sciences.

Funding

This study was partially supported by the Sichuan Provincial Finance Department (the Accurate Identification Project of Crop Germplasm; 2022ZZCX006; 1 + 9KJGG001), the Sichuan Province Science and Technology Department (2023NSFSC1925, 2021YFYZ0020), and the National Natural Science Foundation of China (31401383).

Author information

Authors and Affiliations

Authors

Contributions

H. Wan and M. Yang performed most of the experiments; J. Li, Q. Wang, and W. Yang participated in part of the material creation and their genotyping; Z. Liu, J. Zheng, S. Li and N. Yang participated in part of the field experiments. H. Wan wrote the manuscript, and W. Yang improved it. W. Yang designed and supervised this study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wuyun Yang.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Wan and M. Yang are co-first authors of the article.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, H., Yang, M., Li, J. et al. Cytological and genetic effects of rye chromosomes 1RS and 3R on the wheat-breeding founder parent Chuanmai 42 from southwestern China. Mol Breeding 43, 40 (2023). https://doi.org/10.1007/s11032-023-01386-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-023-01386-0

Keywords

Navigation