Skip to main content
Log in

Development and validation of donor-specific STS markers for tracking alien introgressions into Brassica juncea (L.) Czern

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Alien introgressions into crop plants rely on phenotypic evaluation. Employing molecular markers could greatly accelerate this and help discover new alleles/QTLs. We report here a new strategy to develop markers for tracking introgression using genome survey sequence. We demonstrate this using an advanced backcross population of Brassica juncea involving the wild species Diplotaxis erucoides. To develop D. erucoides-specific markers, 72 million single end reads were obtained using Ion-Torrent platform. Quality reads (67.6 million) were checked against Brassica database and the redundant reads were eliminated. De novo assembly of the remaining 14.6 million reads gave 3895 contigs (> 1 kb), which were used to design 101 donor-specific (DS) STS markers. Of these, 89 markers showed polymorphism between D. erucoides and B. juncea. Genotyping of 90 randomly picked plants with 31 donor-specific STS markers detected 22 plants containing 17 markers. Alien introgression was also detected in eight of the 22 lines displaying phenotypes deviating from B. juncea parent. The marker DSSTS 70 was found in six of the nine lines showing glossy leaf suggesting its association with the trait. This is the first study demonstrating the use of molecular markers for implementing reverse genetics approach for alien introgression into crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atri C, Kumar B, Kumar H, Kumar S, Sharma S, Banga SS (2012) Development and characterization of Brassica junceafruticulosa introgression lines exhibiting resistance to mustard aphid (Lipaphis erysimi Kalt). BMC Genet 13:104. doi:10.1186/1471-2156-13-104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107:467–590. doi:10.1093/aob/mcq258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat SR, Vijayan P, Ashutosh, Dwivedi KK, Prakash S (2006) Diplotaxis erucoides-induced cytoplasmic male sterility in Brassica juncea is rescued by the Moricandia arvensis restorer: genetic and molecular analyses. Plant Breed 125:150–155. doi:10.1111/j.1439-0523.2006.01184.x

    Article  CAS  Google Scholar 

  • Bimpong IK, Serraj R, Chin JH, Ramos J, Mendoza EMT, Hernandez JE, Mendioro MS, Brar DS (2011) Identification of QTLs for drought-related traits in alien introgression lines derived from crosses of rice (Oryza sativa cv. IR64) x O. glaberrima under lowland moisture stress. J Plant Biol 54:237–250. doi:10.1007/s12374-011-9161-z

    Article  Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085. doi:10.1111/pbi.12454

    Article  CAS  PubMed  Google Scholar 

  • Chen C, He W, Nassirou TY, Zhou W, Yin Y, Dong X, Rao Q, Shi H, Zhao W, Efisue A, Jin D (2016) Genetic diversity and phenotypic variation in an introgression line population derived from an interspecific cross between Oryza galberrima and Oryza sativa. PLoS One 11(9):e0161746. doi:10.1371/journal.pone.0161746

    Article  PubMed  PubMed Central  Google Scholar 

  • Conn KL, Tewari JP, Dahiya JS (1988) Resistance to Alternaria brassicae and phytoalexin-elicitation in rapeseed and other crucifers. Plant Sci 56:21–25. doi:10.1016/0168-9452(88)90180-X

    Article  CAS  Google Scholar 

  • Dwivedi S, Upadhyaya HD, Stalker HT, Blair MW, Bertioli DJ, Nielen S, Oritz R (2008) Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed Rev 30:179–230. doi:10.1002/9780470380130.ch3

    Article  CAS  Google Scholar 

  • Gaikwad KB, Singh N, Bhatia D, Kaur R, Bains NJ, Bharaj TS, Singh K (2014) Yield-enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L. PLoS One 9(6):e96939. doi:10.1371/journal.pone.0096939

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg H, Banga S, Bansal P, Atri C, Banga SS (2007) Hybridizing Brassica rapa with wild crucifers Diplotaxis erucoides and Brassica maurorum. Euphytica 156:417–424. doi:10.1007/s10681-007-9391-9

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13. doi:10.1007/s10681-007-9363-0

    Article  Google Scholar 

  • He R, Chang Z, Yang Z, Yuan Z, Zhan H, Zhang X, Liu J (2009) Inheritance and mapping of powdery mildew resistance gene Pm43 introgressed from Thinopyrum intermedium into wheat. Theor Appl Genet 118:1173–1180. doi:10.1007/s00122-009-0971-z

    Article  CAS  PubMed  Google Scholar 

  • Hodel RGJ, Gitzendanner MA, Germain-Aubrey CC, Liu XX, Crowl AA, Sun M, Landis JB, Segovia-Salcedo MC, Douglas NA, Chen S, Soltis DE, Soltis PS (2016a) A new resource for the development of SSR markers: millions of loci from a thousand plant transcriptome. Appl Plant Sci 4(6):1600024. doi:10.3732/apps.1600024

    Article  Google Scholar 

  • Hodel RGJ, Segovia-Salcedo MC, Landis JB, Crowl AA, Sun M, Liu XX, Gitzendanner MA, Douglas MA, Germain-Aubrey CC, Chen S, Soltis DE, Soltis PS (2016b) The report of my death was an exaggeration: a review for researchers using microsatellites in the 21st century. Appl Plant Sci 4(6):1600025. doi:10.3732/apps.1600025

    Article  Google Scholar 

  • Kirti PB, Mohapatra T, Khanna H, Prakash S, Chopra VL (1995) Diplotaxis catholica + Brassica juncea somatic hybrids: molecular and cytogenetic characterization. Plant Cell Rep 14:593–597. doi:10.1007/BF00231945

  • Liu JH, Dixelius C, Eriksson I, Glimelius K (1995) Brassica napus (+) B. tournefortii, a somatic hybrid containing traits of agronomic importance for rapeseed breeding. Plant Sci 109:75–86. doi:10.1016/0168-9452(95)04150-S

  • Lysak MA, Koch MA, Pecinka A, Schubert I (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525. doi:10.1101/gr.3531105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahato AK, Sharma N, Singh A, Srivastav M, Jaiprakash, Singh SK, Singh AK, Sharma TR, Singh NK (2016) Leaf transcriptome sequencing for identifying genic-SSR markers and SNP heterozygosity in crossbred mango variety ‘Amrapali’ (Mangifera indica L.) PLoS One 11(10):e0164325. doi:10.1371/journal.pone.0164325

    Article  PubMed  PubMed Central  Google Scholar 

  • Mei J, Ding Y, Lu K, Wei D, Liu Y, Disi JO, Li J, Liu L, Liu S, McKay J, Qian W (2013) Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea. Theor Appl Genet 126:549–556. doi:10.1007/s00122-012-2000-x

    Article  CAS  PubMed  Google Scholar 

  • Messeguer R, Ganal M, Devicente MC, Young ND, Bolkan H, Tanksley SD (1991) High-resolution RFLP map around the root-knot nematode resistance gene (Mi) in tomato. Theor Appl Genet 82:529–536. doi:10.1007/BF00226787

    Article  CAS  PubMed  Google Scholar 

  • Milla SR, Levin JS, Lewis RS, Rufty RC (2005) RAPD and SCAR markers linked to an introgressed gene conditioning resistance to Peronospora tabacina D.B. Adam. in tobacco. Crop Sci 45:2346–2354. doi:10.2135/cropsci2004.0754

    Article  CAS  Google Scholar 

  • Panella L, Lewellen RT (2007) Broadening the genetic base of sugar beet: introgression from wild relatives. Euphytica 154:383–400. doi:10.1007/s10681-006-9209-1

    Article  CAS  Google Scholar 

  • Prakash S, Bhat SR, Fu TD (2009) Wild germplasm and male sterility. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, Boca Raton, pp 113–127

  • Primard-Brisset C, Poupard JP, Horvais R, Eber F, Pelletier G, Renard M, Delourme R (2005) A new recombined double low restorer line for the Ogu-INRA CMS in rapeseed (Brassica napus L.) Theor Appl Genet 111:736–746. doi:10.1007/s00122-005-2059-8

    Article  CAS  PubMed  Google Scholar 

  • Qiong H, Yunchang L, Desheng M (2009) Introgression of genes from wild crucifers. In: Gupta SK (ed) Biology and breeding of crucifers. CRC Press, Boca Raton, pp 261–283

  • Saal B, Brun H, Glais I, Struss D (2004) Identification of a Brassica juncea-derived recessive gene conferring resistance to Leptosphaeria maculans in oilseed rape. Plant Breed 123:505–511. doi:10.1111/j.1439-0523.2004.01052.x

    Article  CAS  Google Scholar 

  • Sage RF, Khoshravesh R, Sage TL (2014) From proto-Kranz to C4 Kranz: building the bridge to C4 phtosynthesis. J Exp Bot 65:3341–3356. doi:10.1093/jxb/eru180

    Article  PubMed  Google Scholar 

  • Sharma G, Kumar VD, Haque A, Bhat SR, Prakash S, Chopra VL (2002) Brassica coenospecies: a rich reservoir for genetic resistance to leaf spot caused by Alternaria brassicae. Euphytica 125:411–417. doi:10.1023/A:1016050631673

    Article  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203. doi:10.1007/BF00223376

    Article  CAS  PubMed  Google Scholar 

  • Toal T, Burkart-Waco D, Howell T, Ron M, Kuppu S, Britt AB, Chetelat RT, Brady SM (2016) Indel Group in Genomes (IGG) molecular genetic markers. Plant Physiol 172:38–61. doi:10.1104/pp.16.00354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warwick SI, Francis A, Gugel RK (2009) Guide to wild germplasm of Brassica and allied crops (tribe Brassiceae, Brassicaceae), 3rd edn. Part IV: Wild crucifer species as sources of traits. p 60

  • Yang J, Liu D, Wang X, Ji C, Cheng F, Liu B, Hu Z, Chen S, Pental D, Ju Y, Yao P, Li X, Xie K, Zhang J, Wang J, Liu F, Ma W, Shopan J, Zheng H, Mackenzie SA, Zhang M (2016) The genome sequence of alloploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection. Nat Genet 48:1225–1232. doi:10.1038/ng.3657

Download references

Acknowledgements

We thank NPTC-ICAR, Government of India for funding this work. We are grateful to Dr. T. R. Sharma, Project Director, NRCPB for access to CLC Genomics Workbench V7.5.1 software.

Author information

Authors and Affiliations

Authors

Contributions

NV- bioinformatics, design of primers, laboratory work and draft manuscript preparation; RC, MR and UP- population development, maintenance and phenotyping; RB- design of experiments and data analysis; SRB- conceptualization and design of experiments, development of basic material, phenotyping, data analysis, manuscript preparation and finalization.

Corresponding author

Correspondence to Shripad Ramachandra Bhat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Key Message

The study demonstrates for the first time an efficient reverse genetics approach for alien gene introgression into cultivated species.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasupalli, N., Rao, M., Chamola, R. et al. Development and validation of donor-specific STS markers for tracking alien introgressions into Brassica juncea (L.) Czern. Mol Breeding 37, 110 (2017). https://doi.org/10.1007/s11032-017-0714-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0714-9

Keywords

Navigation