Skip to main content
Log in

Marker–trait association analysis of kernel hardness and related agronomic traits in a core collection of wheat lines

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Identification of marker–trait associations is the first step towards marker-assisted selection in plant breeding. Here we assess genetic diversity and population structure of 94 diverse wheat elite lines and use genome-wide association mapping to identify marker–trait associations for five important traits: kernel hardness (KHA), thousand-kernel weight, grain protein content, test weight (TWT), and plant height (PHT). The 94 accessions employed in this study were grouped into three subpopulations based on the first three principal components, which accounted for 51.5 % of the variations. A mixed linear model was used to detect marker–trait associations incorporating covariance of population structure and relative kinship. A total of six marker loci was significantly associated with KHA, TWT, and PHT after the correction of false discovery rate (α c  = 0.05). The gene pinB was found to be highly associated with KHA, and is reported to be a major determinant of KHA together with the gene pinA at the Ha locus on chromosome 5D. Marker XwPt-7187 on chromosome 2A was also significantly associated with KHA, two Diversity Arrays Technology markers XwPt-1250 and XwPt-4628 with TWT, and marker Xgwm512 with PHT, making the first report of marker–trait associations in these genomic regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H (2006) Diversity Arrays Technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113(8):1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172(2):1165–1177

    Article  PubMed Central  PubMed  Google Scholar 

  • Breseghello F, Finney PL, Gaines C, Andrews L, Tanaka J, Penner G, Sorrells ME (2005) Genetic loci related to kernel quality differences between a soft and a hard wheat cultivar. Crop Sci 45(5):1685–1695

    Article  CAS  Google Scholar 

  • Campbell KG, Finney PL, Bergman CJ, Gualberto DG, Anderson JA, Giroux MJ, Siritunga D, Zhu J, Gendre F, Roue C, Verel A, Sorrells ME (2001) Quantitative trait loci associated with milling and baking quality in a soft × hard wheat cross. Crop Sci 41:1275–1285

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Bucker ES IV (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54(1):357–374

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57(4):461–485

    Article  CAS  PubMed  Google Scholar 

  • Jolly CJ, Glenn GM, Rahman S (1996) GSP-1 genes are linked to the grain hardness locus (Ha) on wheat chromosome 5D. Proc Natl Acad Sci USA 93(6):2408–2413

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245(4922):1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Kraakman ATW, Niks RE, Van den Berg P, Stam P, Van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168(1):435–446

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kruglyak L (1999) Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nat Genet 22:139–144

    Article  CAS  PubMed  Google Scholar 

  • Martin CR, Rousser R, Brabec DL (1993) Development of a single-kernel wheat characterization system. Trans ASAE 36(5):1399–1404

    Article  Google Scholar 

  • Morris CF, Greenblatt GA, Bettge AD, Malkawi HI (1994) Isolation and characterization of multiple forms of friabilin. J Cereal Sci 20(2):167–174

    Article  CAS  Google Scholar 

  • Nelson JC, Deynze AEV, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995) Molecular mapping of wheat. Homoeologous group 3. Genome 38:516–524

    Article  CAS  PubMed  Google Scholar 

  • Nelson JC, Andreescu C, Breseghello F, Finney PL, Gualberto DG, Bergman CJ, Peña RJ, Perretant MR, Leroy P, Qualset CO (2006) Quantitative trait locus analysis of wheat quality traits. Euphytica 149(1):145–159

    Article  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30(2):190–193

    CAS  PubMed  Google Scholar 

  • Osborne BG, Anderssen RS (2003) Single-kernel characterization principles and applications. Cereal Chem 80(5):613–622

    Article  CAS  Google Scholar 

  • Perretant MR, Cadalen T, Charmet G, Sourdille P, Nicolas P, Boeuf C, Tixier MH, Branlard G, Bernard S, Bernard M (2000) QTL analysis of bread-making quality in wheat using a doubled haploid population. Theor Appl Genet 100:1167–1175

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pshenichnikova TA, Ermakova MF, Chistyakova AK, Shchukina LV, Berezovskaya EV, Lochwasser U, Röder M, Börner A (2008) Mapping of the quantitative trait loci (QTL) associated with grain quality characteristics of the bread wheat grown under different environmental conditions. Russ J Genet 44(1):74–84

    CAS  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110(5):865–880

    Article  CAS  PubMed  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98(20):11479–11484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riera-Lizarazu O, Vales MI, Ananiev EV, Rines HW, Phillips RL (2000) Production and characterization of maize chromosome 9 radiation hybrids derived from an oat–maize addition line. Genetics 156:327–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riera-Lizarazu O, Peterson CJ, Wang G, Leonard JM (2010) Registration of the OS9XQ36 mapping population of wheat (Triticum aestivum L.). J Plant Regist 4(1):98–104

    Google Scholar 

  • Roder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149(4):2007–2023

    CAS  PubMed Central  PubMed  Google Scholar 

  • Semagn K, Bjørnstad Å, Skinnes H, Marøy A, Tarkegne Y, William M (2006) Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49(5):545–555

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Leonard JM, Ross AS, Peterson CJ, Zemetra RS, Garland Campbell K, Riera-Lizarazu O (2011) Identification of genetic factors controlling kernel hardness and related traits in a recombinant inbred population derived from a soft × ‘extra-soft’ wheat (Triticum aestivum L.) cross. Theor Appl Genet 124(1):207–221

    Article  PubMed  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates Inc., Sunderland, MA

    Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Zanetti S, Winzeler M, Feuillet C, Keller B, Messmer M (2001) Genetic analysis of bread-making quality in wheat and spelt. Plant Breed 120(1):13–19

    CAS  Google Scholar 

  • Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1(1):5–20

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Research Initiative of the USDA-Coordinate State Research, Education and Extension Service (Coordinate Agricultural Project (CAP) Grant Number 2006-55606-16629), Oregon State University Agricultural Research Foundation, Oregon Agricultural Experiment Station, and the Oregon Wheat Commission, are greatly appreciated (all grants were awarded to Dr. Oscar Riera-Lizarazu at Oregon State University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guomei Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 63 kb)

Supplementary material 2 (XLSX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Leonard, J.M., von Zitzewitz, J. et al. Marker–trait association analysis of kernel hardness and related agronomic traits in a core collection of wheat lines. Mol Breeding 34, 177–184 (2014). https://doi.org/10.1007/s11032-014-0028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0028-0

Keywords

Navigation