Skip to main content
Log in

High-resolution genetic map of the Rvi15 (Vr2) apple scab resistance locus

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The Rvi15 (Vr2) apple scab resistance locus found in the GMAL 2473 accession has been previously mapped to the top of the Linkage Group 2 (LG2) by analyzing 89 progeny plants of a cross between ‘Idared’ and GMAL 2473. A new population of 989 progeny plants, derived from a cross between ‘Golden Delicious’ and GMAL 2473, has been analyzed with the two SSR markers CH02c02a and CH02f06, previously found to be associated with Rvi15 (Vr2), and with two published markers derived from NBS sequences (ARGH17 and ARGH37) estimated to map close to the Rvi15 (Vr2) locus. ARGH17 and ARGH37, were found to be the closest markers to the resistance locus, bracketing it within an interval of 1.5 cM. The SSRs mapped one on each side of Rvi15 (Vr2). CH02f06 mapped at 2.9 cM from ARGH37 while CH02a02a mapped at 1.7 from ARGH17. The position of Rvi15 (Vr2) respect to CH02a02a indicates that Rvi15 (Vr2) and Rvi4 (Vh4), a second apple scab gene mapped on the top of LG2, are two different resistance genes. In order to develop even more tightly linked markers to Rvi15 (Vr2), ARGH17 was used as the starting point for chromosome walking through the Rvi15 (Vr2) homolog region of the cv. ‘Florina’. A single ‘Florina’ BAC clone, 36I17, was sufficient to span the homologous locus in the new population’s recombinant progeny. Sequencing of the 36I17 BAC clone allowed identifying seven putative ORFs, including two showing a TIR-NBS-LRR structure. Ten additional markers could be developed mapping within a 1.8 cM interval around the Rvi15 (Vr2) resistance gene. ARGH17 and GmTNL1 markers, the latter also derived from NBS-LRR resistance gene homolog sequence, are the closest markers to Rvi15 (Vr2) bracketing it within a 0.5 cM interval. The availability of 12 markers within the Rvi15 (Vr2) region, all within a small physical distance (kbp) in ‘Florina’, suggests that cloning of the Rvi15 (Vr2) apple scab resistance gene from GMAL 2473 will be possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arumanagathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:229–241. doi:10.1007/BF02672069

    Article  Google Scholar 

  • Baldi P, Patocchi A, Zini E, Toller C, Velasco R, Komjanc M (2004) Cloning and linkage mapping of resistance gene homologues in apple. Theor Appl Genet 109:231–239. doi:10.1007/s00122-004-1624-x

    Article  CAS  PubMed  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci U S A 101:886–890. doi:10.1073/pnas.0304808101

    Article  CAS  PubMed  Google Scholar 

  • Bénaouf G, Parisi L (2000) Genetics of the host-pathogen relationship between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90:236–242. doi:10.1094/PHYTO.2000.90.3.236

    Article  PubMed  Google Scholar 

  • Birnboim HC, Doly J (1979) Rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  CAS  PubMed  Google Scholar 

  • Broggini GAL, Galli P, Parravicini G, Gianfranceschi L, Gessler C, Patocchi A (2009) HcrVf2 paralogs are present on linkage groups 1 and 6 Malus. Genome 52:129–138. doi:10.1139/G08-111

    Article  CAS  PubMed  Google Scholar 

  • Bus VGM, Rikkerink EHA, van de Weg WE, Rusholme RL, Gardiner SE, Bassett HCM, Kodde LP, Parisi L, Laurens FND, Meulenbroek EJ, Plummer KM (2005a) The Vh2 and Vh4 scab resistance genes in two differential hosts derived from Russian apple R12740–7A map to the same linkage group of apple. Mol Breed 15:103–116. doi:10.1007/s11032-004-3609-5

    Article  CAS  Google Scholar 

  • Bus VGM, Laurens FND, Van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Plummer KM (2005b) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740–7A. New Phytol 166:1035–1049. doi:10.1111/j.1469-8137.2005.01395.x

    Article  CAS  PubMed  Google Scholar 

  • Bus VGM, Rikkerink EHA, Aldwinckle HS, Caffier V, Durel C-E, Gardiner S, Gessler C, Groenwold R, Laurens F, Le Cam B, Luby J, MacHardy W, Meulenbroek B, Kellerhals M, Parisi L, Patocchi A, Plummer K, Schouten HJ, Tartarini S, van de Weg WE (2009) A proposal for the nomenclature of Venturia inaequalis races. Acta Hortic 814:739–746

    Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel CE (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379. doi:10.1094/PHYTO.2004.94.4.370

    Article  CAS  PubMed  Google Scholar 

  • Calenge F, Van der Linden CG, Van de Weg E, Schouten HJ, Van Arkel G, Denance C, Durel CE (2005) Resistance gene analogues identified through the NBS-profiling method map close to major genes and QTL for disease resistance in apple. Theor Appl Genet 110:660–668. doi:10.1007/s00122-004-1891-6

    Article  CAS  PubMed  Google Scholar 

  • Cevik V, King GJ (2002) Resolving the aphid resistance locus Sd-1 on a BAC contig within a sub-telomeric region of Malus linkage group 7. Genome 45:939–945. doi:10.1139/G02-067

    Article  CAS  PubMed  Google Scholar 

  • Chevalier M, Lespinasse Y, Renaudin S (1991) A Microscopic study of the different classes of symptoms coded by the Vf gene in apple for resistance to scab (Venturia Inaequalis). Plant Pathol 40:249–256. doi:10.1111/j.1365-3059.1991.tb02374.x

    Article  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833. doi:10.1038/35081161

    Article  CAS  PubMed  Google Scholar 

  • Galli P, Broggini GAL, Gessler C, Patocchi A (2010) Phenotypic characterization of the Rvi15 (Vr2) apple scab resistance. J Plant Pathol (accepted)

  • Gessler C (1989) Genetics of the interaction Venturia inaequalisMalus: the conflict between theory and reality. In: Gessler C, Butt DJ, Koller B (eds) Integrated control of pome fruit diseases, vol II. IOBC Bull, pp 168–190

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503. doi:10.1080/07352680601015975

    Article  CAS  Google Scholar 

  • Gianfranceschi L, Koller B, Seglias N, Kellerhals M, Gessler C (1996) Molecular selection in apple for resistance to scab caused by Venturia inaequalis. Theor Appl Genet 93:199–204. doi:10.1007/BF00225746

    Article  CAS  Google Scholar 

  • Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076. doi:10.1007/s001220050841

    Article  CAS  Google Scholar 

  • Gygax M, Gianfranceschi L, Liebhard R, Kellerhals M, Gessler C, Patocchi A (2004) Molecular markers linked to the apple scab resistance gene Vbj derived from Malus baccata jackii. Theor Appl Genet 109:1702–1709. doi:10.1007/s00122-004-1803-9

    Article  CAS  PubMed  Google Scholar 

  • Janick J, Cummins JN, Brown SK, Hemmat M (1996) Apples. In: Janick J, Moore JN (eds) Fruit breeding: tree and tropical fruits, vol I. Wiley, New York, pp 1–77

    Google Scholar 

  • Kellerhals M, Gianfranceschi L, Seglias N, Gessler C (2000) Marker-assisted selection in apple breeding. Acta Hort 521:255–265

    CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) ClustalW2 and ClustalX version 2. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  • Laurens F (1999) Review of the current apple breeding programmes in the world: objective for scion cultivar improvement. Acta Hort 484:162–170

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241. doi:10.1023/A:1020525906332

    Article  CAS  Google Scholar 

  • MacHardy WE (1996) Apple Scab. Biology epidemiology, and management. APS Press, St. Paul

    Google Scholar 

  • MacHardy WE, Gadoury DM, Gessler C (2001) Parasitic and biological fitness of Venturia inaequalis: relationship to disease management strategies. Plant Dis 85:1036–1051. doi:10.1094/PDIS.2001.85.10.1036

    Article  Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458. doi:10.1094/MPMI-21-4-0448

    Article  CAS  PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang HH, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834. doi:10.1105/tpc.009308

    Article  CAS  PubMed  Google Scholar 

  • Naik S, Hampson C, Gasic K, Bakkeren G, Korban SS (2006) Development and linkage mapping of E-STS and RGA markers for functional gene homologues in apple. Genome 49:959–968. doi:10.1139/G06085

    Article  CAS  PubMed  Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Kruger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83:533–537

    Article  Google Scholar 

  • Patocchi A, Gianfranceschi L, Gessler C (1999a) Towards the map-based cloning of Vf: fine and physical mapping of the Vf region. Theor Appl Genet 99:1012–1017. doi:10.1007/s001220051409

    Article  CAS  Google Scholar 

  • Patocchi A, Vinatzer BA, Gianfranceschi L, Tartarini S, Zhang HB, Sansavini S, Gessler C (1999b) Construction of a 550 kb BAC contig spanning the genomic region containing the apple scab resistance gene Vf. Mol Gen Genet 262:884–891

    Article  CAS  PubMed  Google Scholar 

  • Patocchi A, Bigler B, Koller B, Kellerhals M, Gessler C (2004) Vr2: a new apple scab resistance gene. Theor Appl Genet 109:1087–1092. doi:10.1007/s00122-004-1723-8

    Article  CAS  PubMed  Google Scholar 

  • Patocchi A, Frei A, Frey JE, Kellerhals M (2009) Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol Breed (online first). doi:10.1007/s11032-009-9295-6

    Google Scholar 

  • Roberts AL, Crute IR (1994) Apple scab resistance from Malus floribunda 821 (Vf) is rendered ineffective by isolates of Venturia inaequalis from Malus floribunda. Norw J Agric Sci Suppl 17:403–406

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz S (eds) Bioinformatics methods and protocols. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10:516–522. doi:10.1101/gr.10.4.516

    Article  CAS  PubMed  Google Scholar 

  • Soriano JM, Joshi SG, van Kaauwen M, Noordijk Y, Groenwold R, Henken B, van de Weg WE, Schouten HJ (2009) Identification and mapping of the novel apple scab resistance gene Vd3. Tree Genet Genomes 5:1614–2942. doi:10.1007/s11295-009-0201-5

    Article  Google Scholar 

  • Van Ooijen J, Voorrips R (2002) JoinMap® 3.0, software fort he calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Vinatzer BA, Zhang HB, Sansavini S (1998) Construction and characterization of a bacterial artificial chromosome library of apple. Theor Appl Genet 97:1183–1190. doi:10.1007/s001220051008

    Article  CAS  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the funding of this research through the ETH grant TH-11/04-2. We thank the Swiss Federal Station of Wädenswil (ACW) for providing the plant material. We are also grateful to the Institute of Plant Biology, University of Zürich, for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Patocchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galli, P., Broggini, G.A.L., Kellerhals, M. et al. High-resolution genetic map of the Rvi15 (Vr2) apple scab resistance locus. Mol Breeding 26, 561–572 (2010). https://doi.org/10.1007/s11032-010-9391-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9391-7

Keywords

Navigation