Skip to main content

Advertisement

Log in

Stably expressed d-genome-derived HMW glutenin subunit genes transformed into different durum wheat genotypes change dough mixing properties

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Durum wheat (Triticum turgidum L. var. durum) is traditionally used for the production of numerous types of pasta, and significant amounts are also used for bread-making, particularly in southern Italy. The research reported here centres on the glutenin subunits 1Dx5 and 1Dy10 encoded by chromosome 1D, and whose presence in hexaploid wheats is positively correlated with higher dough strength. In order to study the effects of stable expression of the 1Dx5 and 1Dy10 glutenin subunits in different durum wheat genotypes, four cultivars commonly grown in the Mediterranean area (‘Svevo’, ‘Creso’, ‘Varano’ and ‘Latino’) were co-transformed, via particle bombardment of cultured immature embryos, with the two wheat genes Glu-D1-1d and Glu-D1-2b encoding the glutenin subunits, and a third plasmid containing the bar gene as a selectable marker. Protein gel analyses of T1 generation seed extracts showed expression of one or both glutenin genes in four different transformed durum wheat plants. One of these transgenic lines, DC2-65, showed co-suppression of all HMW-GS, including the endogenous ones. Transgene stability in the transgenic lines has been studied over four generations (T1–T4). Fluorescence in situ hybridization (FISH) analysis of metaphase chromosomes from T4 plants showed that the integration of transgenes occurred in both telomeric and centromeric regions. The three plasmids were found inserted at a single locus in two lines and in two loci on the same chromosome arm in one line. The fourth line had two transgenic loci on different chromosomes: one with both glutenin plasmids and a different one containing only the construct with the gene encoding the 1Dy10 glutenin subunit. Segregation of these two loci in subsequent generations allowed establishment of two sublines, one containing both 1Dx5 and 1Dy10 and the other containing only 1Dy10. Small-scale quality tests showed that accumulation of Dx5, Dy10 or both in transgenic durum wheat seeds resulted in doughs with stronger mixing characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abranches R, Santos AP, Wegel E, Williams S, Castilho A, Christou P, Shaw P, Stoger E (2000) Widely separated multiple transgene integration sites in wheat chromosomes are brought together at interphase. Plant J 24:713–723

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Vasil V, Srivastava V, Vasil IK (1996) Integration and expression of the high-molecular-weight glutenin subunit 1Ax1 gene into wheat. Nat Biotechnol 14:1155–1159

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Popelk JC, Wieser H (2004) Stable expression of 1Dx5 and 1Dy10 high molecular weight glutenin subunit genes in transgenic rye drastically increases the polymeric glutelin fraction in rye flour. Plant Mol Biol 54:783–792

    Article  PubMed  CAS  Google Scholar 

  • Alvarez ML, Guelman S, Halford NG, Lustig S, Reggiardo MI, Ryabushkina N, Shewry P, Stein J, Vallejos RH (2000) Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits. Theor Appl Genet 100:319–327

    Article  CAS  Google Scholar 

  • Alvarez ML, Gómez M, Carrillo JM, Vallejos RH (2001) Analysis of dough functionality of flours from transgenic wheat. Mol Breeding 8:103–108

    Article  CAS  Google Scholar 

  • Anderson OD, Greene FC, Yip RE, Halford NG, Shewry PR, Malpica-Romero JM (1989) Nucleotide sequences of the two high-molecular-weight glutenin genes from the d-genome of a hexaploid bread wheat, Triticum aestivum L. cv Cheyenne. Nucleic Acids Res 17(1):461–462

    Article  PubMed  CAS  Google Scholar 

  • Barro R, Rooke L, Békés F, Gras P, Tatham AS, Fido R, Lazzeri PA, Shewry PR, Barceló P (1997) Transformation of wheat with high-molecular-weight subunit genes results in improved functional properties. Nat Biotechnol 15:1295–1299

    Article  PubMed  CAS  Google Scholar 

  • Barro F, Barceló P, Lazzeri PA, Shewry PR, Ballesteros J, Martín A (2003a) Functional properties of flours from field grown transgenic wheat lines expressing the HMW glutenin subunit 1Ax1 and 1Dx5 genes. Mol Breeding 12:223–229

    Article  CAS  Google Scholar 

  • Barro F, Martin A, Cabrera A (2003b) Transgene integration and chromosome alterations in two transgenic lines of tritordeum. Chromosome Res 11:565–572

    Article  PubMed  CAS  Google Scholar 

  • Blanco A, Simeone R, Gadaleta A (2006) Detection of QTLs for grain protein content in durum wheat. Theor Appl Genet 112:1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Blechl AE, Anderson OD (1996) Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat Biotechnol 14:875–879

    Article  PubMed  CAS  Google Scholar 

  • Blechl AE, Le HQ, Anderson OD (1998) Engineering changes in wheat flour by genetic transformation. J Plant Physiol 152:703–707

    CAS  Google Scholar 

  • Blechl A, Lin J, Nguyen S, Chan R, Anderson OD, Dupont FM (2007) Transgenic wheats with elevated levels of Dx5 and/or Dy10 high-molecular-weight glutenin subunits yield doughs with increased mixing strength and tolerance. J Cereal Sci 45:172–183

    Article  CAS  Google Scholar 

  • Bommineni VR, Jauhar PP, Peterson TS (1997) Transgenic durum wheat by microprojectile bombardment of isolated scutella. J Heredity 88:475–481

    Google Scholar 

  • Butow BJ, Tatham AS, Savage AWJ, Gilbert SM, Shewry PR, Solomon RG, Békés F (2003) Creating a balance–the incorporation of a HMW glutenin subunit into transgenic wheat lines. J Cereal Sci 38:181–187

    Article  CAS  Google Scholar 

  • Carter BP, Morris CF, Anderson JA (1999) Optimizing the SDS sedimentation test for end-use quality selection in a soft white and club wheat breeding program. Cereal Chem 76:907–911

    Article  CAS  Google Scholar 

  • Cho M-J, Choi HW, Buchanan BB, Lemaux PG (1999) Inheritance of tissue-specific expression of barley hordein promoter uidA fusion in transgenic barley plants. Theor Appl Genet 98:1253–1262

    Article  CAS  Google Scholar 

  • Darlington H, Fido R, Tatham AS, Jones H, Salmon SE, Shewry PR (2003) Milling and baking properties of field grown wh\eat expressing HMW subunit transgenes. J Cereal Sci 38:301–306

    Article  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) Isolation of DNA from higher plants. PMB Rep 4:19–21

    Google Scholar 

  • Dick JW, Quick JS (1983) A modified screening test for rapid estimation of gluten strength in early-generation durum wheat breeding lines. Cereal Chem 60:315–318

    Google Scholar 

  • Gadaleta A, Blechl AE, Nguyen S, Blanco A (2002) Embryogenic callus induction and plant regeneration variability among Italian durum wheat cultivars. Proceedings of EUCARPIA Cereal Section Meeting. Salsomaggiore, Italy, 21–25 November 2002, pp 440–442

  • Gadaleta A, Giancaspro A, Blechl A, Blanco A (2006) Phosphomannose isomerase, pmi, as a selectable marker gene for durum wheat transformation. J Cereal Sci 43:31–37

    Article  CAS  Google Scholar 

  • He GY, Rooke L, Steele S, Bekes F, Gras P, Tatham AS, Fido R, Barcelo P, Shewry PR, Lazzeri PA (1999) Transformation of pasta wheat (Triticum turgidum L. var. durum) with high-molecular weight glutenin subunit genes and modification of dough functionality. Mol Breed 5:377–386

    Article  CAS  Google Scholar 

  • Iglesias VA, Moscone EA, Papp I, Neuhuber F, Michalowski S, Phelan T, Spiker S, Matzke M, Matzke AJM (1997) Molecular and cytogenetic analyses of stably and unstably expressed transgene loci in tobacco. Plant Cell 9:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Jackson SA, Zhang P, Chen WP, Phillips RH, Friebe B, Muthukrishnan S, Gill BS (2001) High-resolution structural analysis of biolistic transgene integration into the genome of wheat. Theor Appl Genet 103:56–62

    Article  CAS  Google Scholar 

  • Jones HD (2005) Wheat transformation: current technology and applications to grain development and composition. J Cereal Sci. 41:137–147

    Article  CAS  Google Scholar 

  • Kohli A, Leech M, Vain P, Laurie DA, Christou P (1998) Transgene organization in rice engineered through direct DNA transfer supports a two-phase integration mechanism mediated by the establishment of integration hot-spots. Proc Natl Acad Sci USA 95:7203–7208

    Article  PubMed  CAS  Google Scholar 

  • Kumpatla S, Chandrasekharan M, Lyer L, Li G, Hall T (1998) Genome intruder scanning and modulation systems and transgene silencing. Trends Plant Sci 3:97–104

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Patnaik D, Khurana P (2001) Wheat Biotechnology: A mini review. Electr J Biotech 4:1–29

    Google Scholar 

  • Pawlowski WP, Somers DA (1996) Transgene inheritance in plants genetically engineered by microprojectile bombardment. Mol Biotechnol 6:17–30

    Article  PubMed  CAS  Google Scholar 

  • Pedersen C, Zimny J, Becker D, Janhne-Gartner A, Lorz H (1997) Localization of introduced genes on the chrmomosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization. Theor Appl Genet 94:749–757

    Article  CAS  Google Scholar 

  • Popineau Y, Deshayes G, Lefebvre J, Fido R, Tatham AS, Shewry PR (2001) Prolamin aggregation, gluten viscoelasticity, and mixing properties of transgenic wheat lines expressing 1Ax and 1Dx high molecular weight glutenin subunit transgenes. J Agric Food Chem 49:395–401

    Article  PubMed  CAS  Google Scholar 

  • Rakszegi M, Békés F, Láng L, Tamás L, Shewry PR, Bedő Z (2005) Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. J Cereal Sci 42:15–23

    Article  CAS  Google Scholar 

  • Register JC, Peterson DJ, Bell PJ, Bullock WP, Evans IJ, Frame B, Greenland AJ, Higgs NS, Jepson I, Jiao SP, Lewnau CJ, Sillick JM, Wilson HM (1994) Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol Biol 25:951–961

    Article  PubMed  CAS  Google Scholar 

  • Rooke L, Barro F, Tatham AS, Fido R, Steele S, Békés F, Gras P, Martin A, Lazzeri P, Shewry PR, Barcelo P (1999a) Altered functional properties of tritordeum by transformation with HMW glutenin subunit genes. Theor Appl Genet 99:851–858

    Article  CAS  Google Scholar 

  • Rooke L, Bekes F, Fido R, Barro F, Gras P, Tatham AS, Barcelo P, Lazzeri P, Shewry PR (1999b) Over expression of a gluten protein in transgenic wheat results in greatly increased dough strength. J Cereal Sci 30:115–120

    Article  CAS  Google Scholar 

  • Rooke L, Steele SH, Barcelo P, Shewry PR, Lazzeri PA (2003) Transgene inheritance, segregation and expression in bread wheat. Euphytica 129:301–309

    Article  CAS  Google Scholar 

  • Salvo-Garrido H, Travella S, Schwarzacher T, Harwood WA, Snape J (2001) An efficient method for the physical mapping of transgenes in barley using in situ hybridization. Genome 44:104–110

    Article  PubMed  CAS  Google Scholar 

  • Sangtong V, Moran DL, Chikwamba R, Wang KW, Woodman-Clikeman MJ, Long M., Lee M, Scott P (2002) Expression and inheritance of the wheat Glu-1Dx5 gene in transgenic maize. Theor Appl Genet 105:937–945

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG, Tatham AS, Popineau Y, Lafiandra D, Belton PS (2003) The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv Food Nutr Res 45:221–302

    Google Scholar 

  • Shewry PR, Powers S, Field JM, Fido RJ, Jones HD, Arnold GM, West J, Lazzeri PA, Barcelo P, Barro F, Tatham AS, Bekes F, Butow B, Darlington H (2006) Comparative field performance over 3 years and two sites of transgenic wheat lines expressing HMW subunit transgenes. Theor Appl Genet 113:128–136

    Article  PubMed  CAS  Google Scholar 

  • Spencer TM, O’Brein VJ, Start WG, Adams TR, Gordon-Kamm JW, Lemaux PG (1992) Segregation of transgenes in maize. Plant Mol Biol 18:201–210

    Article  PubMed  CAS  Google Scholar 

  • Srivastava V, Vasil V, Vasil IK (1996) Molecular characterization of the fate of transgenes in transformed wheat (Triticum aestivum L.). Theor Appl Genet 92:1031–1037

    Article  CAS  Google Scholar 

  • Svitashev SK, Somers DA (2001) Genomic interspersions determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome 44:691–697

    Article  PubMed  CAS  Google Scholar 

  • Svitashev S, Ananiev E, Pawlowski WP, Somers DA (2000) Association of transgene integration sites with chromosome rearrangements in hexaploid oat. Theor Appl Genet 100:872–880

    Article  CAS  Google Scholar 

  • Tosi P, D’Ovidio R, Napier JA, Bekes F, Shewry P (2004) Expression of epitope-tagged LMW glutenin subunits in the starchy endosperm of transgenic wheat and their incorporation into glutenin polymers. Theor Appl Genet 108:468–476

    Article  PubMed  CAS  Google Scholar 

  • Vasil IK, Anderson OD (1997) Genetic engineering of wheat gluten. Trends Plant Sci 2:292–297

    Article  Google Scholar 

  • Wang J, Lewis ME, Whallon JH, Sink KC (1995) Chromosomal mapping of T-DNA inserts in transgenic Petunia by in situ hybridization. Transgenic Res 4:241–246

    Article  CAS  Google Scholar 

  • Weeks JT, Anderson OD, Blechl AE (1993) Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiol 102:1077–1084

    PubMed  CAS  Google Scholar 

  • Wieser H, Seilmeier W, Kieffer R, Altpeter F (2005) Flour protein composition and functional properties of transgenic rye lines expressing HMW subunit genes of wheat. Cereal Chem 82:594–600

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by USDA Agricultural Research Service CRIS projects 5325-21430-015-00D and 5325-21430-006-00D and by grants from Università degli Studi di Bari, Italy, project: Ateneo 2003, 2006. The authors thank Jeanie Lin for her valuable technical support and Brad Miller for help with the field trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gadaleta.

Additional information

A. Gadaleta and A. E. Blechl have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadaleta, A., Blechl, A.E., Nguyen, S. et al. Stably expressed d-genome-derived HMW glutenin subunit genes transformed into different durum wheat genotypes change dough mixing properties. Mol Breeding 22, 267–279 (2008). https://doi.org/10.1007/s11032-008-9172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9172-8

Keywords

Navigation