Skip to main content
Log in

Reaction strategies for the meta-selective functionalization of pyridine through dearomatization

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The pyridine moiety is a crucial structural component in various pharmaceuticals. While the direct ortho- and para-functionalization of pyridines is relatively straightforward, the meta-selective C-H functionalization remains a significant challenge. This review highlights dearomatization strategies as a key area of interest in expanding the application of meta-C–H functionalization of pyridines. Dearomatization enables the meta-functionalization through various catalytic methods that directly generate dearomatization products, and some products can be rearomatized back to pyridine derivatives. Furthermore, this article also covers the dearomatization of multiple positions of pyridine in the synthesis of polycyclic compounds. It offers a comprehensive overview of the latest advancements in dearomatization at different positions of pyridine, aiming to provide a valuable resource for researchers in this field. It also highlights the advantages and limitations of existing technologies, aiming to inform a broader audience about this important field and foster its future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17

Similar content being viewed by others

References

  1. Guillemard L, Kaplaneris N, Ackermann L, Johansson MJ (2021) Late-stage C–H functionalization offers new opportunities in drug discovery. Nat Rev Chem 5:522–545. https://doi.org/10.1038/s41570-021-00300-6

    Article  CAS  PubMed  Google Scholar 

  2. De S, Kumar SKA, Shaha SK, Kazia S, Sarkara N, Banerjeec S, Dey S (2022) Pyridine: the scaffolds with significant clinical diversity. RSC Adv 12:15385–15406. https://doi.org/10.1039/D2RA01571D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M (2021) Visible light photocatalysis in the late-stage functionalization of pharmaceutically relevant compounds. Chem Soc Rev 50:766–897. https://doi.org/10.1039/D0CS00493F

    Article  CAS  PubMed  Google Scholar 

  4. Zhang Y, Pike A (2021) Pyridones in drug discovery: recent advances. Bioorg Med Chem Lett 38:127849. https://doi.org/10.1016/j.bmcl.2021.127849

    Article  CAS  PubMed  Google Scholar 

  5. Wencel-Delord J, Glorius F (2013) C–H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat Chem 5:369–375. https://doi.org/10.1038/nchem.1607

    Article  CAS  PubMed  Google Scholar 

  6. Maji L, Teli G, Raghavendra NM, Sengupta S, Pal R, Ghara A, Matada GSP (2023) An updated literature on BRAF inhibitors (2018–2023). Mol Divers. https://doi.org/10.1007/s11030-023-10699-3

    Article  PubMed  Google Scholar 

  7. Kuttruff CA, Haile M, Kraml J, Tautermann CS (2018) Late-stage functionalization of drug-like molecules using diversinates. ChemMedChem 13:983–987. https://doi.org/10.1002/cmdc.201800151

    Article  CAS  PubMed  Google Scholar 

  8. Heravi MM, Zadsirjan V (2020) Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv 10:44247–44311. https://doi.org/10.1039/D0RA09198G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang C, Arora S, Maldonado S, Pratt DA, Stephenson CRJ (2023) The design of PINO-like hydrogen-atom-transfer catalysts. Nat Rev Chem 7:653–666. https://doi.org/10.1038/s41570-023-00511-z

    Article  CAS  PubMed  Google Scholar 

  10. Lee W, Koo Y, Jung H, Chang S, Hong S (2023) Energy-transfer-induced [3+2] cycloadditions of N-N pyridinium ylides. Nat Chem 15:1091–1099. https://doi.org/10.1038/s41557-023-01258-2

    Article  CAS  PubMed  Google Scholar 

  11. Failla M, Lombardo GW, Orlando P, Fiorito D, Bombonato E, Ronchi P, Passarella D, Fasano V (2023) Late-stage functionalisation of pyridine-containing bioactive molecules: recent strategies and perspectives. Eur J Org Chem 26:e202300074. https://doi.org/10.1002/ejoc.202300074

    Article  CAS  Google Scholar 

  12. Zhuang Z, Herron AN, Liu S, Yu J-Q (2021) Rapid construction of tetralin, chromane, and indane motifs via cyclative C–H/C–H coupling: four-step total synthesis of (±)-Russujaponol F. J Am Chem Soc 143(2):687–692. https://doi.org/10.1021/jacs.0c12484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bull JA, Mousseau JJ, Pelletier G, Charette AB (2012) Synthesis of pyridine and dihydropyridine derivatives by regio- and stereoselective addition to N-activated pyridines. Chem Rev 112(5):2642–2713. https://doi.org/10.1021/cr200251d

    Article  CAS  PubMed  Google Scholar 

  14. Murakami K, Yamada S, Kaneda T, Itami K (2017) C−H functionalization of azines. Chem Rev 117:9302–9332. https://doi.org/10.1021/acs.chemrev.7b00021

    Article  CAS  PubMed  Google Scholar 

  15. Babar K, Zahoor AF, Akhtar AS, R, (2021) Recent synthetic strategies toward the synthesis of spirocyclic compounds comprising six-membered carbocyclic/heterocyclic ring systems. Mol Divers 25:2487–2532. https://doi.org/10.1007/s11030-020-10126-x

    Article  CAS  PubMed  Google Scholar 

  16. Zhuo C-X, Zhang W, You S-L (2012) Catalytic asymmetric dearomatization reactions. Angew Chem Int Ed Engl 51(51):2662–12686. https://doi.org/10.1002/anie.201204822

    Article  CAS  Google Scholar 

  17. Huck CJ, Sarlah D (2020) Shaping molecular landscapes: recent advances, opportunities, and challenges in dearomatization. Chem 6:1589–1603. https://doi.org/10.1016/j.chempr.2020.06.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gribble MW Jr, Liu RY, Buchwald SL (2020) Evidence for simultaneous dearomatization of two aromatic rings under mild conditions in Cu(I)-catalyzed direct asymmetric dearomatization of pyridine. J Am Chem Soc 142(25):11252–11269. https://doi.org/10.1021/jacs.0c04486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Comparini LM, Pineschi M (2023) Recent progresses in the catalytic stereoselective dearomatization of pyridines. Molecules 28(17):6186. https://doi.org/10.3390/molecules28176186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cao H, Cheng Q, Studer A (2023) Meta-selective C−H functionalization of pyridines. Angew Chem Int Ed 62(42):e202302941. https://doi.org/10.1002/anie.202302941

    Article  CAS  Google Scholar 

  21. Min X-L, Zhang X-L, Yi W, He Y (2022) Brønsted acid-enhanced copper-catalyzed atroposelective cycloisomerization to axially chiral arylquinolizones via dearomatization of pyridine. Nat Commun 13:373. https://doi.org/10.1038/s41467-022-27989-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maity S, Bera A, Bhattacharjya A, Maity P (2023) C–H functionalization of pyridines. Org Biomol Chem 21:5671–5690. https://doi.org/10.1039/D3OB00799E

    Article  CAS  PubMed  Google Scholar 

  23. Islam B, Islam I, Nath N, Emran TB, Rahman R, Sharma R, Matin MM (2023) Recent advances in pyridine scaffold: focus on chemistry, synthesis, and antibacterial activities. BioMed Res Int 2023:9967591. https://doi.org/10.1155/2023/9967591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Y, Li R, Guan W, Li Y, Li X, Yin J, Zhang G, Zhang Q, Xiong T, Zhang Q (2020) Organoborohydride-catalyzed chichibabin-type C4-position alkylation of pyridines with alkenes assisted by organoboranes. Chem Sci 11:11554–11561. https://doi.org/10.1039/D0SC04808A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng C, You S-L (2021) Advances in catalytic asymmetric dearomatization. ACS Cent Sci 7(3):432–444. https://doi.org/10.1021/acscentsci.0c01651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ji P, Davies CC, Gao F, Chen J, Meng X, Houk KN, Chen S, Wang W (2022) Selective skeletal editing of polycyclic arenes using organophotoredox dearomative functionalization. Nat Commun 13:4565. https://doi.org/10.1038/s41467-022-32201-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chu L, Shang M, Tanaka K, Chen Q, Pissarnitski N, Streckfuss E, Yu J-Q (2015) Remote meta-C–H activation using a pyridine-based template: achieving site-selectivity via the recognition of distance and geometry. ACS Cent Sci 1(7):394–399. https://doi.org/10.1021/acscentsci.5b00312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hepburn HB, Donohoe TJ (2020) Reductive hydroxymethylation of 4-heteroarylpyridines. Chem Eur J 26:1963–1967. https://doi.org/10.1002/chem.202000060

    Article  CAS  PubMed  Google Scholar 

  29. Marinic B, Hepburn HB, Grozavu A, Dow M, Donohoe TJ (2021) Single point activation of pyridines enables reductive hydroxymethylation. Chem Sci 12:742. https://doi.org/10.1039/D0SC05656A

    Article  CAS  Google Scholar 

  30. Greßies S, Süße L, Casselman T, Stoltz BM (2023) Tandem dearomatization/enantioselective allylic alkylation of pyridines. J Am Chem Soc 145:11907–11913. https://doi.org/10.1021/jacs.3c02470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kutney JP, Greenhouse R (1975) The protection and deprotection of the pyridine nitrogen. Synt Commun 5(2):119–124. https://doi.org/10.1080/00397917508061441

    Article  CAS  Google Scholar 

  32. Kubota K, Watanabe Y, Hayama K, Ito H (2016) Enantioselective synthesis of chiral piperidines via the stepwise dearomatization/borylation of pyridines. J Am Chem Soc 138:4338–4341. https://doi.org/10.1021/jacs.6b01375

    Article  CAS  PubMed  Google Scholar 

  33. Grozavu A, Hepburn HB, Bailey EP, Lindsay-Scott PJ, Donohoe TJ (2020) Rhodium catalysed C-3/5 methylation of pyridines using temporary dearomatisation. Chem Sci 11:8595. https://doi.org/10.1039/D0SC02759F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cao H, Chen Q, Studer A (2022) Radical and ionic meta-C–H functionalization of pyridines, quinolines, and isoquinolines. Science 378(6621):779–785. https://doi.org/10.1126/science.ade6029

    Article  CAS  PubMed  Google Scholar 

  35. Heusler A, Fliege J, Wagener T, Glorius F (2021) Substituted dihydropyridine synthesis by dearomatization of pyridines. Angew Chem Int Ed 60(25):13793–13797. https://doi.org/10.1002/anie.202104115

    Article  CAS  Google Scholar 

  36. Grozavu A, Hepburn HB, Smith PJ, Potukuchi HK, Lindsay-Scott PJ, Donohoe TJ (2019) The reductive C3 functionalization of pyridinium and quinolinium salts through iridium-catalysed interrupted transfer hydrogenation. Nat Chem 11:242–247. https://doi.org/10.1038/s41557-018-0178-5

    Article  CAS  PubMed  Google Scholar 

  37. Sun G-Q, Yu P, Zhang W, Zhang W, Wang Y, Liao L-L, Zhang Z, Li L, Lu Z, Yu D-G, Lin S (2023) Electrochemical reactor dictates site selectivity in N-heteroarene carboxylations. Nature 615:67–72. https://doi.org/10.1038/s41586-022-05667-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Choi J, Laudadio G, Godineau E, Baran PS (2021) Practical and regioselective synthesis of C-4-alkylated pyridines. J Am Chem Soc 143(31):11927–11933. https://doi.org/10.1021/jacs.1c05278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gribble MW Jr, Guo S, Buchwald SL (2018) Asymmetric Cu-catalyzed 1,4-dearomatization of pyridines and pyridazines without preactivation of the heterocycle or nucleophile. J Am Chem Soc 140(5):5057–5060. https://doi.org/10.1021/jacs.8b02568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sandford C, Aggarwal VK (2017) Stereospecific functionalizations and transformations of secondary and tertiary boronic esters. Chem Commun 53:5481–5494. https://doi.org/10.1039/C7CC01254C

    Article  CAS  Google Scholar 

  41. Tamang SR, Singh A, Unruh DK, Findlater M (2018) Nickelcatalyzed regioselective 1,4-hydroboration of N-heteroarenes. ACS Catal 8:6186–6191. https://doi.org/10.1021/acscatal.8b01166

    Article  CAS  Google Scholar 

  42. Corio A, Gravier-Pelletier C, Busca P (2021) Regioselective functionalization of quinolines through C–H activation: a comprehensive review. Molecules 26(18):5467. https://doi.org/10.3390/molecules26185467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou X-Y, Zhang M, Liu Z, He J-H, Wang X-C (2022) C3-selective trifluoromethylthiolation and difluoromethylthiolation of pyridines and pyridine drugs via dihydropyridine intermediates. J Am Chem Soc 144:14463–14470. https://doi.org/10.1021/jacs.2c06776

    Article  CAS  PubMed  Google Scholar 

  44. Zhang M, Zhou Q, Luo H, Tang Z-L, Xu X, Wang X-C (2023) C3-cyanation of pyridines: constraints on electrophiles and determinants of regioselectivity. Angew Chem Int Ed 62:e202216894. https://doi.org/10.1002/anie.202216894

    Article  CAS  Google Scholar 

  45. Liu Z, He J-H, Zhang M, Shi Z-J, Tang H, Zhou X-Y, Tian J-J, Wang X-C (2022) Borane-catalyzed C3-alkylation of pyridines with Imines, aldehydes, or ketones as electrophiles. J Am Chem Soc 144:4810–4818. https://doi.org/10.1021/jacs.2c00962

    Article  CAS  PubMed  Google Scholar 

  46. Tian J-J, Li R-R, Tian G-X, Wang X-C (2023) Enantioselective C3-allylation of pyridines via tandem borane and palladium catalysis. Angew Chem Int Ed 62:e202307697. https://doi.org/10.1002/anie.202307697

    Article  CAS  Google Scholar 

  47. Liu Z, Shi Z-J, Liu L, Zhang M, Zhang M-C, Guo H-Y, Wang X-C (2023) Asymmetric C3-allylation of pyridines. J Am Chem Soc 145:11789–11797. https://doi.org/10.1021/jacs.3c03056

    Article  CAS  PubMed  Google Scholar 

  48. Boyle BT, Levy JN, de Lescure L, Paton RS, McNally A (2022) Halogenation of the 3-position of pyridines through Zincke imine intermediates. Science 378:773–779. https://doi.org/10.1126/science.add898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao X, Han T-J, Li B-B, Hou X-X, Hua Y-Z, Jia S-K, Xiao X, Wang M-C, Wei D, Mei G-J (2023) Catalytic asymmetric dearomatization of phenols via divergent intermolecular (3 + 2) and alkylation reactions. Nat Commun 14:5189. https://doi.org/10.1038/s41467-023-40891-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wertjes WC, Southgate EH, David S (2018) Recent advances in chemical dearomatization of nonactivated arenes. Chem Soc Rev 47:7996–8017. https://doi.org/10.1039/C8CS00389K

    Article  CAS  PubMed  Google Scholar 

  51. Kerkovius JK, Stegner A, Turlik A, Lam PH, Houk KN, Reisman SE (2022) A pyridine dearomatization approach to the matrine-type lupin alkaloids. J Am Chem Soc 144(35):15938–15943. https://doi.org/10.1021/jacs.2c06584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Feng X, Song Y, Chen J-S, Li Z, Chen E-Y, Kaufmann M, Wang C, Lin W (2019) Cobalt-bridged secondary building units in a titanium metal−organic framework catalyze cascade reduction of N-heteroarenes. Chem Sci 10:2193–2198. https://doi.org/10.1039/C8SC04610G

    Article  CAS  PubMed  Google Scholar 

  53. Wang D, Wang Z, Liu Z, Huang M, Hu J, Yu P (2019) Strategic C–C bond-forming dearomatization of pyridines and quinolines. Org Lett 21(12):4459–4463. https://doi.org/10.1021/acs.orglett.9b01247

    Article  CAS  PubMed  Google Scholar 

  54. Wu L, Sheong FK, Lin Z (2022) DFT studies on coppercatalyzed dearomatization of pyridine. ACS Catal 10:9585–9593. https://doi.org/10.1021/acscatal.0c01491

    Article  CAS  Google Scholar 

  55. Liu R, Shi R-G, Sun J, Yan C-G (2017) A [3+2]-[4+2]-[3+2] cycloaddition sequence of isoquinolinium ylide. Org Chem Front 4:354–357. https://doi.org/10.1039/C6QO00615A

    Article  CAS  Google Scholar 

  56. Li T-T, You Y, Sun T-J, Zhang Y-P, Zhao J-Q, Wang Z-H, Yuan W-C (2022) Copper-catalyzed decarboxylative cascade cyclization of propargylic cyclic carbonates/carbamates with pyridinium 1,4-zwitterionic thiolates to fused polyheterocyclic structures. Org Lett 24(28):5120. https://doi.org/10.1021/acs.orglett.2c01959

    Article  CAS  PubMed  Google Scholar 

  57. Miao H, Bai X, Wang L, Yu J, Bu Z, Wang Q (2021) Diastereoselective construction of cage-like and bridged azaheterocycles through dearomative maximization of the reactive sites of azaarenes. Org Chem Front 8:204–211. https://doi.org/10.1039/D0QO01196G

    Article  CAS  Google Scholar 

  58. Lee J, Ko D, Park H, Yoo EJ (2020) Direct cyclopropanation of activated N-heteroarenes via site- and stereoselective dearomative reactions. Chem Sci 11:1672–1676. https://doi.org/10.1039/C9SC06369B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cui Z, Zhang K, Gu L, Bu Z, Zhao J, Wang Q (2021) Diastereoselective trifunctionalization of pyridinium salts to access structurally crowded azaheteropolycycles. Chem Commun 57:9402–9405. https://doi.org/10.1039/D1CC03478B

    Article  CAS  Google Scholar 

  60. Baek S, Young Lee J, Ko D, Baik M-H, Yoo EJ (2018) Rationally designing regiodivergent dipolar cycloadditions: frontier orbitals show how to switch between [5+3] and [4+2] cycloadditions. ACS Catal 8(7):6353–6361. https://doi.org/10.1021/acscatal.8b00845

    Article  CAS  Google Scholar 

  61. Ma J, Strieth-Kalthoff F, Dalton T, Freitag M, Schwarz JL, Bergander K, Daniliuc C, Glorius F (2019) Direct dearomatization of pyridines via an energy-transfer-catalyzed intramolecular [4+2] cycloaddition. Chem 5:2854–2864. https://doi.org/10.1016/j.chempr.2019.10.020

    Article  CAS  Google Scholar 

  62. Siddiqi Z, Bingham TW, Shimakawa T, Hesp KD, Shavnya A, Sarlah D (2024) Oxidative dearomatization of pyridines. J Am Chem Soc 146(4):2358–2363. https://doi.org/10.1021/jacs.3c13603

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Science Foundation Project of CQ CSTSC (cstc2021ycjh-bgzxm0163) and the Chongqing University of Arts and Sciences: Program for Talents Introduction (R2022YX07).

Author information

Authors and Affiliations

Authors

Contributions

All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Zhi-Gang Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Xu, ZG. Reaction strategies for the meta-selective functionalization of pyridine through dearomatization. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10861-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10861-5

Keywords

Navigation