Skip to main content

Advertisement

Log in

Three finger toxins of elapids: structure, function, clinical applications and its inhibitors

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The WHO lists snakebite as a “neglected tropical disease”. In tropical and subtropical areas, envenoming is an important public health issue. This review article describes the structure, function, chemical composition, natural inhibitors, and clinical applications of Elapids’ Three Finger Toxins (3FTX) using scientific research data. The primary venomous substance belonging to Elapidae is 3FTX, that targets nAChR. Three parallel β-sheets combine to create 3FTX, which has four or five disulfide bonds. The three primary types of 3FTX are short-chain, long-chain, and nonconventional 3FTX. The functions of 3FTX depend on the specific toxin subtype and the target receptor or ion channel. The well-known effect of 3FTX is probably neurotoxicity because of the severe consequences of muscular paralysis and respiratory failure in snakebite victims. 3FTX have also been studied for their potential clinical applications. α-bungarotoxin has been used as a molecular probe to study the structure and function of nAChRs (Nicotinic Acetylcholine Receptors). Acid-sensing ion channel (ASIC) isoforms 1a and 1b are inhibited by Mambalgins, derived from Black mamba venom, which hinders their function and provide an analgesic effect. α- Cobra toxin is a neurotoxin purified from Chinese cobra (Naja atra) binds to nAChR at the neuronal junction and causes an analgesic effect for moderate to severe pain. Some of the plants and their compounds have been shown to inhibit the activity of 3FTX, and their mechanisms of action are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All necessary data generated or analyzed during this study are included in this published article [and its supplementary information files].

References

  1. Kaul S, Sai Keerthana L, Kumar P, Birader K, Tammineni Y, Rawat D, Suman P (2021) Cytotoxin antibody-based colourimetric sensor for field-level differential detection of elapid among big four snake venom. PLoS Negl Trop Dis 15(10):e0009841. https://doi.org/10.1371/journal.pntd.0009841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Suryamohan K, Krishnankutty SP, Guillory J, Jevit M, Schröder MS, Wu M, Kuriakose B, Mathew OK, Perumal RC, Koludarov I, Goldstein LD (2020) The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins. Nat Genet 52(1):106–117. https://doi.org/10.1038/s41588-019-0559-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Warrell DA (2010) Snake bite. Lancet 375(9708):77–88. https://doi.org/10.1016/S0140-6736(09)61754-2

    Article  PubMed  Google Scholar 

  4. Kini RM, Doley R (2010) Structure, function and evolution of three-finger toxins: mini proteins with multiple targets. Toxicon 56(6):855–867. https://doi.org/10.1016/j.toxicon.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  5. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ (2008) The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 5(11):e218. https://doi.org/10.1371/journal.pmed.0050218

    Article  PubMed  PubMed Central  Google Scholar 

  6. Babenko VV, Ziganshin RH, Weise C et al (2020) Novel bradykinin-potentiating peptides and three-finger toxins from viper venom: combined NGS venom gland transcriptomics and quantitative venom proteomics of the Azemiopsfeae viper. Biomed 8(8):249. https://doi.org/10.3390/biomedicines8080249

    Article  CAS  Google Scholar 

  7. Weinstein SA (2021) Reptile Venom Glands: Form, Function, Future, Concepts and Controversies. In: Mackessy SP, Mackessy SP (eds) Handbook of Venoms and Toxins of Reptiles. CRC Press, Boca Raton

    Google Scholar 

  8. Tasoulis T, Pukala TL, Isbister GK (2022) Investigating toxin diversity and abundance in snake venom proteomes. Front Pharmacol 12:3869. https://doi.org/10.3389/fphar.2021.768015

    Article  CAS  Google Scholar 

  9. Modahl CM, Brahma RK, Koh CY, Shioi N, Kini RM (2020) Omics technologies for profiling toxin diversity and evolution in snake venom: impacts on the discovery of therapeutic and diagnostic agents. Annu Rev Anim Biosci 8:91–116. https://doi.org/10.1146/annurev-animal-021419-083626

    Article  CAS  PubMed  Google Scholar 

  10. Calvete JJ, Sanz L, Angulo Y, Lomonte B, Gutiérrez JM (2009) Venoms, venomics, antivenomics. FEBS Lett 583(11):1736–1743. https://doi.org/10.1186/s40409-017-0117-8

    Article  CAS  PubMed  Google Scholar 

  11. Calvete JJ (2014) Next-generation snake venomics: protein-locus resolution through venom proteome decomplexation. Expert Rev Proteomic 11(3):315–329. https://doi.org/10.1586/14789450.2014.900447

    Article  CAS  Google Scholar 

  12. Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biotechnol Biomed. https://doi.org/10.1155/2012/251364

    Article  Google Scholar 

  13. Pawlak J, Mackessy SP, Fry BG, Bhatia M, Mourier G, Fruchart-Gaillard C, Servent D, Ménez R, Stura E, Ménez A, Denmotoxin KRM (2006) A three-finger toxin from the colubrid snake Boiga dendrophila (Mangrove Catsnake) with bird-specific activity. JBC 281(39):29030–29041. https://doi.org/10.1074/jbc.M605850200

    Article  CAS  Google Scholar 

  14. Jiang M, Häggblad J, Heilbronn E (1987) Isolation and pharmacological characterization of a new α-neurotoxin (α-AgTx) from venom of the viper Ackistrodonhalys (Pallas). Toxicon 25(9):1019–1022. https://doi.org/10.1016/0041-0101(87)90167-X

    Article  CAS  PubMed  Google Scholar 

  15. Endo T, Tamiya N (1991) Structure-function relationship of postsynaptic neurotoxins from snake venoms. In: Harvey AL (ed) Snake Toxins. Pergamon Press, New York, pp 165–222

    Google Scholar 

  16. Ménez A (1998) Functional architectures of animal toxins: a clue to drug design? Toxicon: official Int. J. Toxicol 36(11):1557–1572. https://doi.org/10.1016/s0041-0101(98)00148-2

    Article  Google Scholar 

  17. Gulsevin A, Meiler J (2020) An investigation of three-finger toxin—nAChR Interactions through Rosetta protein docking. Toxins 12(9):598. https://doi.org/10.3390/toxins12090598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gutierrez JM, Calvete JJ, Habib AG, Harrison RA, Williams DJ, Warrell DA (2017) Snakebite envenoming. Nat Rev Dis Primers 3:17063. https://doi.org/10.1038/nrdp.2017.63

    Article  PubMed  Google Scholar 

  19. Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Trim SA, Vaiyapuri S (2019) The urgent need to develop novel strategies for the diagnosis and treatment of snakebites. Toxins (Basel). https://doi.org/10.3390/toxins11060363

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dufton MJ, Hider RC (1983) Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. CRC Crit Rev Biochem 14(2):113–171. https://doi.org/10.3109/10409238309102792

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen TT, Folch B, Létourneau M, Vaudry D, Truong NH, Doucet N, Chatenet D, Fournier A (2012) Cardiotoxin-I: an unexpectedly potent insulinotropic agent. Chembiochem : Eur J Biol 13(12):1805–1812. https://doi.org/10.1002/cbic.201200081

    Article  CAS  Google Scholar 

  22. Pu XC, Wong PT, Gopalakrishnakone P (1995) A novel analgesic toxin (hannalgesin) from the venom of king cobra (Ophiophagus hannah). Toxicon 33(11):1425–1431. https://doi.org/10.1016/0041-0101(95)00096-5

    Article  CAS  PubMed  Google Scholar 

  23. Diochot S, Baron A, Salinas M, Douguet D, Scarzello S, Dabert-Gay A-S, Debayle D, Friend V, Alloui A, Lazdunski M, Lingueglia E (2012) Black mamba venom peptides target acid-sensing ion channels to abolish pain. Nature 490(7421):552–555. https://doi.org/10.1038/nature11494

    Article  CAS  PubMed  Google Scholar 

  24. Rosso JP, Schwarz JR, Diaz-Bustamante M, Ceard B, Gutierrez JM, Kneussel M, Pongs O, Bosmans F, Bougis PE (2015) MmTX1 and MmTX2 from coral snake venom potently modulate GABAA receptor activity. Proc Natl Acad Sci U S A 112(8):E891-900. https://doi.org/10.1073/pnas.1415488112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jerusalinsky D, Kornisiuk E, Alfaro P, Quillfeldt J, Alonso M, Verde ER, Cerveñansky C, Harvey A (1998) Muscarinic toxin selective for m4 receptors impairs memory in the rat. NeuroReport 9(7):1407–1411. https://doi.org/10.1097/00001756-199805110-00029

    Article  CAS  PubMed  Google Scholar 

  26. de Weille JR, Schweitz H, Maes P, Tartar A, Lazdunski M, Calciseptine, (1991) a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proc Natl Acad Sci U S A 88(6):2437–2440. https://doi.org/10.1073/pnas.88.6.2437

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rajagopalan N, Pung YF, Zhu YZ, Wong PT, Kumar PP, Kini RM (2007) Beta-cardiotoxin: a new three-finger toxin from Ophiophagus hannah (king cobra) venom with beta-blocker activity. FASEB 21(13):3685–3695. https://doi.org/10.1096/fj.07-8658com

    Article  CAS  Google Scholar 

  28. Abd El-Aziz TM, Al Khoury S, Jaquillard L, Triquigneaux M, Martinez G, Bourgoin-Voillard S, Seve M, Arnoult C, Beroud R, De Waard M, Actiflagelin, (2018) a new sperm activator isolated from Walterinnesiaaegyptia venom using phenotypic screening. JVATiTD 24:2. https://doi.org/10.1186/s40409-018-0140-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McLane MA, Marcinkiewicz C, Vijay-Kumar S, Wierzbicka-Patynowski I, Niewiarowski S (1998) Viper venom disintegrins and related molecules. SEBM 219(2):109–119. https://doi.org/10.3181/00379727-219-4432

    Article  CAS  Google Scholar 

  30. Girish VM, Kini RM, Exactin, (2016) A specific inhibitor of Factor X activation by extrinsic tenase complex from the venom of Hemachatus haemachatus. Sci Rep 6:32036. https://doi.org/10.1038/srep32036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu PL, Lee SC, Chuang CC, Mori S, Akakura N, Wu WG, Takada Y (2006) Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family. J Biol Chem 281(12):7937–7945. https://doi.org/10.1074/jbc.M513035200

    Article  CAS  PubMed  Google Scholar 

  32. Wong KY, Tan KY, Tan NH, Tan CH (2021) A neurotoxic snake venom without phospholipase A2: proteomics and cross-neutralization of the venom from Senegalese cobra, Naja senegalensis (Subgenus: Uraeus). Toxins 13(1):60. https://doi.org/10.3390/toxins13010060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dhein S, van Koppen CJ, Brodde OE (2001) Muscarinic receptors in the mammalian heart. Pharmacol Res Commun 44(3):161–182. https://doi.org/10.1006/phrs.2001.0835

    Article  CAS  Google Scholar 

  34. Intachai K, Chattipakorn SC, Chattipakorn N, Shinlapawittayatorn K (2018) Revisiting the cardioprotective effects of acetylcholine receptor activation against myocardial ischemia/reperfusion injury. Int J Mol Sci 19(9):2466. https://doi.org/10.3390/ijms19092466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hou Z, Zhou Y, Yang H, Liu Y, Mao X, Qin X, Li X, Zhang X, Hu Y (2018) Alpha7 nicotinic acetylcholine receptor activation protects against myocardial reperfusion injury through modulation of autophagy. Biochem Biophys Res Commun 500(2):357–364. https://doi.org/10.1016/j.bbrc.2018.04.077

    Article  CAS  PubMed  Google Scholar 

  36. Dufton MT, Hider RC (1988) Structure and pharmacology of elapid cytotoxins. Pharmacol Ther 36:1–40. https://doi.org/10.1016/0163-7258(88)90111-8

    Article  CAS  PubMed  Google Scholar 

  37. Bilwes A, Rees B, Moras D, Menez R, Menez A (1994) X-ray structure at 1.55 A of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing reveals a model for nsertion into membranes. J Mol Biol 239:122–136. https://doi.org/10.1006/jmbi.1994.1357

    Article  CAS  PubMed  Google Scholar 

  38. Kini RM, Evans HJ (1989) A common cytolytic region in myotoxins, hemolysins, cardiotoxins and antibacterial peptides. Int J Peptide Protein Res 34:277–286. https://doi.org/10.1111/j.1399-3011.1989.tb01575.x

    Article  CAS  Google Scholar 

  39. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, Byrne RA, Collet JP, Falk V, Head SJ, Juni P, Kastrati A, Koller A, Kristensen SD, Niebauer J, Richter DJ, Seferovic PM, Sibbing D, Stefanini GG, Windecker S, Yadav R, Zembala MO, E.S.C.S.D, (2019) Group, 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 40(2):87–165. https://doi.org/10.1093/ejcts/ezy289

    Article  PubMed  Google Scholar 

  40. McFadyen JD, Schaff M, Peter K (2018) Current and future antiplatelet therapies: emphasis on preserving haemostasis. Nat Rev Cardiol 15(3):181–191. https://doi.org/10.1038/nrcardio.2017.206

    Article  CAS  PubMed  Google Scholar 

  41. van der Meijden PEJ, Heemskerk JWM (2019) Platelet biology and functions: new concepts and clinical perspectives. Nat Rev Cardiol 16(3):166–179. https://doi.org/10.1038/s41569-018-0110-0

    Article  CAS  PubMed  Google Scholar 

  42. Xiang Q, Pang X, Liu Z, Yang G, Tao W, Pei Q, Cui Y (2019) Progress in the development of antiplatelet agents: focus on the targeted molecular pathway from bench to clinic. Pharmacol Ther 203:107393. https://doi.org/10.1016/j.pharmthera.2019.107393

    Article  CAS  PubMed  Google Scholar 

  43. Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3(3):a004994. https://doi.org/10.1101/cshperspect.a004994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Longhurst CM, Jennings LK (1998) Integrin-mediated signal transduction. Cell Mol Life Sci 54(6):514–526. https://doi.org/10.1007/s000180050180

    Article  CAS  PubMed  Google Scholar 

  45. Koh CY, Kini RM (2019) Exogenous factors from venomous and hematophagous animals in drugs and diagnostic developments for cardiovascular and neurovascular diseases. Cardiovasc HematolDisord Drug Targets 19(2):90–94. https://doi.org/10.2174/1871529X1902190619123603

    Article  Google Scholar 

  46. Koh CY, Modahl CM, Kulkarni N, Kini RM (2018) Toxins are an excellent source of therapeutic agents against cardiovascular diseases. Semin ThrombHemost 44(7):691–706. https://doi.org/10.1055/s-0038-1661384

    Article  CAS  Google Scholar 

  47. Sutcliffe MJ, Jaseja M, Hyde EI, Lu X, Williams JA (1994) Three-dimensional structure of the RGDcontaining neurotoxin homologue dendroaspin. Nat Struct Biol 1(11):802–807. https://doi.org/10.1038/nsb1194-802

    Article  CAS  PubMed  Google Scholar 

  48. McDowell RS, Dennis MS, Louie A, Shuster M, Mulkerrin MG, Lazarus RA (1992) Mambin, a potent glycoprotein IIb-IIIa antagonist and platelet aggregation inhibitor structurally related to the short neurotoxins. Biochemistry 31(20):4766–4772. https://doi.org/10.1021/bi00135a004

    Article  CAS  PubMed  Google Scholar 

  49. Williams JA, Lu X, Rahman S, Keating C, Kakkar V (1993) Dendroaspin: a potent integrin receptor inhibitor from the venoms of Dendroaspis viridis and D jamesonii. Biochem Soc Trans 21(1):73S. https://doi.org/10.1042/bst021073s

    Article  CAS  PubMed  Google Scholar 

  50. Joubert FJ, Taljaard N (1979) Some properties and the complete primary structures of two reduced and S-carboxymethylated polypeptides (S5C1 and S5C10) from Dendroaspis jamesoni kaimosae (Jameson’s mamba) venom. Biochim Biophys Acta 579(1):228–233. https://doi.org/10.1016/0005-2795(79)90101-6

    Article  CAS  PubMed  Google Scholar 

  51. Carsi-Gabrenas JM (1997) Purification of toxins from green mamba venom with distinct receptor selectivities. University of Miami.

  52. Shiu JH, Chen CY, Chang LS, Chen YC, Chen YC, Lo YH, Liu YC, Chuang WJ (2004) Solution structure of γ-bungarotoxin: The functional significance of amino acid residues flanking the RGD motif in integrin binding. Proteins: Struct Funct 57(4):839–849. https://doi.org/10.1002/prot.20269

    Article  CAS  Google Scholar 

  53. Chang LS, Chung C, Wu BN et al (2002) Characterization and Gene Organization of Taiwan Banded Krait (Bungarus multicinctus) γ-Bungarotoxin. Protein J 21:223–229. https://doi.org/10.1023/A:1019760401692

    Article  CAS  Google Scholar 

  54. Chanda C, Sarkar A, Sistla S, Chakrabarty D (2013) Anti-platelet activity of a three-finger toxin (3FTx) from Indian monocled cobra (Naja kaouthia) venom. BBRC 441(3):550–554. https://doi.org/10.1016/j.bbrc.2013.10.125

    Article  CAS  PubMed  Google Scholar 

  55. Herzig V, Cristofori-Armstrong B, Israel MR, Nixon SA, Vetter I, King GF (2020) Animal toxins—Nature’s evolutionary-refined toolkit for basic research and drug discovery. Biochem Pharmacol 181:114096. https://doi.org/10.1016/j.bcp.2020.114096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Estevão-Costa MI, Sanz-Soler R, Johanningmeier B, Eble JA (2018) Snake venom components in medicine: from the symbolic rod of Asclepius to tangible medical research and application. Int J Biochem 104:94–113. https://doi.org/10.1016/j.biocel.2018.09.011

    Article  CAS  Google Scholar 

  57. Pérez-Peinado C, Defaus S, Andreu D (2020) Hitchhiking with nature: snake venom peptides to fight cancer and superbugs. Toxins 12(4):255. https://doi.org/10.3390/toxins12040255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. McDermott A (2020) Venom back in vogue as a wellspring for drug candidates. PNAS 117(19):10100–10104. https://doi.org/10.1073/pnas.2004486117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mohamed Abd El-Aziz T, Garcia Soares A, Stockand JD (2019) Snake venoms in drug discovery: valuable therapeutic tools for life saving. Toxins (Basel) 11(10):564. https://doi.org/10.3390/toxins11100564

    Article  CAS  PubMed  Google Scholar 

  60. Gu Q, Lee LY (2010) Acid-sensing ion channels and pain. Pharmaceuticals (Basel) 3(5):1411–1425. https://doi.org/10.3390/ph3051411

    Article  CAS  PubMed  Google Scholar 

  61. Osmakov DI, Khasanov TA, Andreev YA, Lyukmanova EN, Kozlov SA (2020) Animal, herb, and microbial toxins for structural and pharmacological study of acid-sensing ion channels. Front Pharmacol 11:991. https://doi.org/10.3389/fphar.2020.00991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wemmie JA, Taugher RJ, Kreple CJ (2013) Acid-sensing ion channels in pain and disease. Nat Rev Neurosci 14(7):461–471. https://doi.org/10.1038/nrn3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mourier G, Salinas M, Kessler P, Stura EA, Leblanc M, Tepshi L, Besson T, Diochot S, Baron A, Douguet D, Lingueglia E, Servent D (2016) Mambalgin-1 pain-relieving peptide, stepwise solid-phase synthesis, crystal structure, and functional domain for acid-sensing ion channel 1a inhibition. J Biol Chem 291(6):2616–2629. https://doi.org/10.1074/jbc.M115.702373

    Article  CAS  PubMed  Google Scholar 

  64. Yoder N, Yoshioka C, Gouaux E (2018) Gating mechanisms of acid-sensing ion channels. Nature 555(7696):397–401. https://doi.org/10.1038/nature25782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salinas M, Besson T, Delettre Q, Diochot S, Boulakirba S, Douguet D, Lingueglia E (2014) Binding site and inhibitory mechanism of the mambalgin-2 pain-relieving peptide on acid-sensing ion channel 1a. J Biol Chem 289(19):13363–13373. https://doi.org/10.1074/jbc.M114.561076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Reid PF (2007) Alpha-cobra toxin as a possible therapy for multiple sclerosis: a review of the literature leading to its development for this application. Crit Rev Immunol 27(4):291–302. https://doi.org/10.1615/critrevimmunol.v27.i4.10

    Article  CAS  PubMed  Google Scholar 

  67. Grozio A, Paleari L, Catassi A, Servent D, Cilli M, Piccardi F, Paganuzzi M, Cesario A, Granone P, Mourier G, Russo P (2008) Natural agents targeting the α7-nicotinic-receptor in NSCLC: a promising prospective in anti-cancer drug development. IJC 122(8):1911–1915. https://doi.org/10.1002/ijc.23298

    Article  CAS  Google Scholar 

  68. Pithayanukul P, Ruenraroengsak P, Bavovada R, Pakmanee N, Suttisri R, Saen-oon S (2005) Inhibition of Naja kaouthia venom activities by plant polyphenols. J Ethnopharmacol 97(3):527–533. https://doi.org/10.1016/j.jep.2004.12.013

    Article  CAS  PubMed  Google Scholar 

  69. Amos Samkumar R, Premnath D, David Paul Raj RS (2019) Strategy for early callus induction and identification of anti-snake venom triterpenoids from plant extracts and suspension culture of Euphorbia hirta L. 3 Biotech 9(7):266. https://doi.org/10.1007/s13205-019-1790-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Raghavan S, Jayaraman G (2021) Synergistic effect of flavonoids combined with antivenom on neutralisation of Naja naja venom. Asian Pac J Trop Biomed 11(7):298. https://doi.org/10.4103/2221-1691.309665

    Article  CAS  Google Scholar 

  71. Samy RP, Thwin MM, Gopalakrishnakone P, Ignacimuthu S (2008) Ethnobotanical survey of folk plants for the treatment of snakebites in Southern part of Tamilnadu. India J Ethnopharmacol 115(2):302–312. https://doi.org/10.1016/j.jep.2007.10.006

    Article  PubMed  Google Scholar 

  72. Sia FY, Vejayan J, Jamuna A, Ambu S (2011) Efficacy of tannins from Mimosa pudica and tannic acid in neutralizing cobra (Naja kaouthia) venom. JVATiTD 17:42–48. https://doi.org/10.1590/S1678-91992011000100006

    Article  CAS  Google Scholar 

  73. Tasoulis T, Isbister GK (2017) A review and database of snake venom proteomes. Toxins 9(9):290. https://doi.org/10.3390/toxins9090290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Whiteley G, Casewell NR, Pla D, Quesada-Bernat S, Logan RA, Bolton FM, Wagstaff SC, Gutiérrez JM, Calvete JJ, Harrison RA (2019) Defining the pathogenic threat of envenoming by South African shield-nosed and coral snakes (genus Aspidelaps), and revealing the likely efficacy of available antivenom. J Proteomics 198:186–198. https://doi.org/10.1016/j.jprot.2018.09.019

    Article  CAS  PubMed  Google Scholar 

  75. Doley R, Tram NN, Reza MA, Kini RM (2008) Unusual accelerated rate of deletions and insertions in toxin genes in the venom glands of the pygmy copperhead (Austrelaps labialis) from Kangaroo islandBMC Evol. Biol 8:1–3. https://doi.org/10.1186/1471-2148-8-70

    Article  CAS  Google Scholar 

  76. Modahl CM, Frietze S, Mackessy SP (2018) Transcriptome-facilitated proteomic characterization of rear-fanged snake venoms reveal abundant metalloproteinases with enhanced activity. J Proteomics 187:223–234. https://doi.org/10.1016/j.jprot.2018.08.004

    Article  CAS  PubMed  Google Scholar 

  77. Patra A, Chanda A, Mukherjee AK (2019) Quantitative proteomic analysis of venom from Southern India common krait (Bungarus caeruleus) and identification of poorly immunogenic toxins by immune-profiling against commercial antivenom. Expert Rev Proteom 16(5):457–469. https://doi.org/10.1080/14789450.2019.1609945

    Article  CAS  Google Scholar 

  78. Kalita B, Mukherjee AK (2019) Recent advances in snake venom proteomics research in India: a new horizon to decipher the geographical variation in venom proteome composition and exploration of candidate drug prototypes. JPP 10:149–164. https://doi.org/10.1007/s42485-019-00014-w

    Article  Google Scholar 

  79. Rusmili MR, Yee TT, Mustafa MR, Hodgson WC, Othman I (2014) Proteomic characterization and comparison of Malaysian Bungarus candidus and Bungarus fasciatus venoms. J Proteomics 110:129–144. https://doi.org/10.1016/j.jprot.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  80. Hia YL, Tan KY, Tan CH (2020) Comparative venom proteomics of banded krait (Bungarus fasciatus) from five geographical locales: Correlation of venom lethality, immunoreactivity and antivenom neutralization. Acta Trop 207:105460. https://doi.org/10.1016/j.actatropica.2020.105460

    Article  CAS  PubMed  Google Scholar 

  81. Chapeaurouge A, Silva A, Carvalho P, McCleary RJ, Modahl CM, Perales J, Kini RM, Mackessy SP (2018) Proteomic deep mining the venom of the red-headed krait. Bungarus flaviceps Toxins 10(9):373. https://doi.org/10.3390/toxins10090373

    Article  CAS  PubMed  Google Scholar 

  82. Shan LL, Gao JF, Zhang YX, Shen SS, He Y, Wang J, Ma XM, Ji X (2016) Proteomic characterization and comparison of venoms from two elapid snakes (Bungarus multicinctus and Naja atra) from China. J Proteomics 138:83–94. https://doi.org/10.1016/j.jprot.2016.02.028

    Article  CAS  PubMed  Google Scholar 

  83. Oh AM, Tan CH, Tan KY, Quraishi NH, Tan NH (2019) Venom proteome of Bungarus sindanus (Sind krait) from Pakistan and in vivo cross-neutralization of toxicity using an Indian polyvalent antivenom. J Proteomics 193:243–254. https://doi.org/10.1016/j.jprot.2018.10.016

    Article  CAS  PubMed  Google Scholar 

  84. Dashevsky D, Rokyta D, Frank N, Nouwens A, Fry BG (2021) Electric blue: molecular evolution of three-finger toxins in the long-glanded coral snake species Calliophis bivirgatus. Toxins 13(2):124. https://doi.org/10.3390/toxins13020124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tan KY, Liew JL, Tan NH, Quah ES, Ismail AK, Tan CH (2019) Unlocking the secrets of banded coral snake (Calliophis intestinalis, Malaysia): a venom with proteome novelty, low toxicity and distinct antigenicity. J Proteomics 192:246–257. https://doi.org/10.1016/j.jprot.2018.09.006

    Article  CAS  PubMed  Google Scholar 

  86. Lauridsen LP, Laustsen AH, Lomonte B, Gutiérrez JM (2016) Toxicovenomics and antivenom profiling of the Eastern green mamba snake (Dendroaspis angusticeps). J Proteomics 136:248–261. https://doi.org/10.1016/j.jprot.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  87. Laustsen AH, Lomonte B, Lohse B, Fernández J, Gutiérrez JM (2015) Unveiling the nature of black mamba (Dendroaspis polylepis) venom through venomics and antivenom immunoprofiling: identification of key toxin targets for antivenom development. J Proteomics 119:126–142. https://doi.org/10.1016/j.jprot.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  88. Chatrath ST, Chapeaurouge A, Lin Q, Lim TK, Dunstan N, Mirtschin P, Kumar PP, Kini RM (2011) Identification of novel proteins from the venom of a cryptic snake Drysdalia coronoides by a combined transcriptomics and proteomics approach. J Proteome Res 10(2):739–750. https://doi.org/10.1021/pr1008916

    Article  CAS  PubMed  Google Scholar 

  89. Sánchez A, Herrera M, Villalta M, Solano D, Segura Á, Lomonte B, Gutiérrez JM, León G, Vargas M (2018) Proteomic and toxinological characterization of the venom of the South African Ringhals cobra Hemachatus haemachatus. J Proteomics 181:104–117. https://doi.org/10.1016/j.jprot.2018.04.007

    Article  CAS  PubMed  Google Scholar 

  90. Neale V, Sotillo J, Seymour JE, Wilson D (2017) The venom of the spine-bellied sea snake (Hydrophis curtus): proteome, toxin diversity and intraspecific variation. Int J Mol Sci 18(12):2695. https://doi.org/10.3390/ijms18122695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang B, Wang Q, Wang C, Wang B, Qiu L, Zou S, Zhang F, Liu G, Zhang L (2020) A comparative analysis of the proteomes and biological activities of the venoms from two sea snakes, Hydrophis curtus and Hydrophis cyanocinctus, from Hainan. China Toxicon 187:35–46. https://doi.org/10.1016/j.toxicon.2020.08.012

    Article  CAS  PubMed  Google Scholar 

  92. Tan CH, Tan KY, Ng TS, Sim SM, Tan NH (2018) Venom proteome of spine-bellied sea snake (Hydrophis curtus) from Penang, Malaysia: toxicity correlation, immunoprofiling and cross-neutralization by sea snake antivenom. Toxins 11(1):3. https://doi.org/10.3390/toxins11010003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Calvete JJ, Ghezellou P, Paiva O, Matainaho T, Ghassempour A, Goudarzi H, Kraus F, Sanz L, Williams DJ (2012) Snake venomics of two poorly known Hydrophiinae: comparative proteomics of the venoms of terrestrial toxicocalamus longissimus and marine hydrophis cyanocinctus. J Proteomics 75(13):4091–4101. https://doi.org/10.1016/j.jprot.2012.05.026

    Article  CAS  PubMed  Google Scholar 

  94. Durban J, Sasa M, Calvete JJ (2018) Venom gland transcriptomics and microRNA profiling of juvenile and adult yellow-bellied sea snake, hydrophis platurus, from Playa del Coco (Guanacaste, Costa Rica). Toxicon 153:96–105. https://doi.org/10.1016/j.toxicon.2018.08.016

    Article  CAS  PubMed  Google Scholar 

  95. Tan CH, Tan KY, Lim SE, Tan NH (2015) Venomics of the beaked sea snake, hydrophis schistosus: a minimalist toxin arsenal and its cross-neutralization by heterologous antivenoms. J Proteomics 126:121–130. https://doi.org/10.1016/j.jprot.2015.05.035

    Article  CAS  PubMed  Google Scholar 

  96. Tan CH, Wong KY, Tan KY, Tan NH (2017) Venom proteome of the yellow-lipped sea krait, laticauda colubrina from Bali: insights into subvenomic diversity, venom antigenicity and cross-neutralization by antivenom. J Proteomics 166:48–58. https://doi.org/10.1016/j.jprot.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  97. Calderón-Celis F, Cid-Barrio L, Encinar JR, Sanz-Medel A, Calvete JJ (2017) Absolute venomics: absolute quantification of intact venom proteins through elemental mass spectrometry. J Proteomics 164:33–42. https://doi.org/10.1016/j.jprot.2017.06.001

    Article  CAS  PubMed  Google Scholar 

  98. Fernández J, Vargas-Vargas N, Pla D, Sasa M, Rey-Suárez P, Sanz L, Gutiérrez JM, Calvete JJ, Lomonte B (2015) Snake venomics of micrurus alleni and micrurus mosquitensis from the Caribbean region of Costa Rica reveals two divergent compositional patterns in New World elapids. Toxicon 107(Pt B):217–233. https://doi.org/10.1016/j.toxicon.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  99. Corrêa-Netto C, Junqueira-de-Azevedo Ide L, Silva DA, Ho PL, Leitão-de-Araújo M, Alves ML, Sanz L, Foguel D, Zingali RB, Calvete JJ (2011) Snake venomics and venom gland transcriptomic analysis of Brazilian coral snakes, micrurus altirostris and M. corallinus. J Proteomics 74(9):1795–1809. https://doi.org/10.1016/j.jprot.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  100. Bénard-Valle M, Neri-Castro E, Yañez-Mendoza MF, Lomonte B, Olvera A, Zamudio F, Restano-Cassulini R, Possani LD, Jiménez-Ferrer E, Alagón A (2020) Functional, proteomic and transcriptomic characterization of the venom from Micrurus browni browni: Identification of the first lethal multimeric neurotoxin in coral snake venom. J Proteomics 225:103863. https://doi.org/10.1016/j.jprot.2020.103863

    Article  CAS  PubMed  Google Scholar 

  101. Lomonte B, Sasa M, Rey-Suárez P, Bryan W, Gutiérrez JM (2016) Venom of the Coral Snake Micrurus clarki: proteomic profile, toxicity, immunological cross-neutralization, and characterization of a three-finger toxin. Toxins (Basel) 8(5):138. https://doi.org/10.3390/toxins8050138

    Article  CAS  PubMed  Google Scholar 

  102. Aird SD, da Silva NJ, Qiu L, Villar-Briones A, Saddi VA, de Campos P, Telles M, Grau ML, Mikheyev AS (2017) Coralsnake venomics: analyses of venom gland transcriptomes and proteomes of six Brazilian Taxa. Toxins (Basel) 9(6):187. https://doi.org/10.3390/toxins9060187

    Article  CAS  PubMed  Google Scholar 

  103. Rey-Suárez P, Núñez V, Fernández J, Lomonte B (2016) Integrative characterization of the venom of the coral snake Micrurus dumerilii (Elapidae) from Colombia: proteome, toxicity, and cross-neutralization by antivenom. J Proteomics 136:262–273. https://doi.org/10.1016/j.jprot.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  104. Sanz L, de Freitas-Lima LN, Quesada-Bernat S, Graça-de-Souza VK, Soares AM, Calderón LA, Calvete JJ, Caldeira CAS (2019) Comparative venomics of Brazilian coral snakes: Micrurus frontalis, Micrurus spixii spixii, and Micrurus surinamensis. Toxicon 166:39–45. https://doi.org/10.1016/j.toxicon.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  105. Margres MJ, Aronow K, Loyacano J, Rokyta DR (2013) The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms. BMC Genom 14:531. https://doi.org/10.1186/1471-2164-14-531

    Article  CAS  Google Scholar 

  106. Sanz L, Quesada-Bernat S, Ramos T, Casais-E-Silva LL, Corrêa-Netto C, Silva-Haad JJ, Sasa M, Lomonte B, Calvete JJ (2019) New insights into the phylogeographic distribution of the 3FTx/PLA2 venom dichotomy across genus Micrurus in South America. J Proteomics 200:90–101. https://doi.org/10.1016/j.jprot.2019.03.014

    Article  CAS  PubMed  Google Scholar 

  107. Rey-Suárez P, Núñez V, Gutiérrez JM, Lomonte B (2011) Proteomic and biological characterization of the venom of the redtail coral snake, Micrurus mipartitus (Elapidae), from Colombia and Costa Rica. J Proteomics 75(2):655–667. https://doi.org/10.1016/j.jprot.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  108. Olamendi-Portugal T, Batista CVF, Pedraza-Escalona M, Restano-Cassulini R, Zamudio FZ, Benard-Valle M, de Roodt AR, Possani LD (2018) New insights into the proteomic characterization of the coral snake Micrurus pyrrhocryptus venom. Toxicon 153:23–31. https://doi.org/10.1016/j.toxicon.2018.08.003

    Article  CAS  PubMed  Google Scholar 

  109. Lippa E, Török F, Gómez A, Corrales G, Chacón D, Sasa M, Gutiérrez JM, Lomonte B, Fernández J (2019) First look into the venom of Roatan Island’s critically endangered coral snake Micrurus ruatanus: proteomic characterization, toxicity, immunorecognition and neutralization by an antivenom. J Proteomics 198:177–185. https://doi.org/10.1016/j.jprot.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  110. Sanz L, Pla D, Pérez A, Rodríguez Y, Zavaleta A, Salas M, Lomonte B, Calvete JJ (2016) Venomic analysis of the poorly studied desert coral snake, Micrurus tschudii tschudii, supports the 3FTX/PLA2 Dichotomy across Micrurus Venoms. Toxins (Basel) 8(6):178. https://doi.org/10.3390/toxins8060178

    Article  CAS  PubMed  Google Scholar 

  111. Tan KY, Wong KY, Tan NH, Tan CH (2020) Quantitative proteomics of Naja annulifera (sub-Saharan snouted cobra) venom and neutralization activities of two antivenoms in Africa. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.04.173

    Article  PubMed  Google Scholar 

  112. Hus KK, Buczkowicz J, Petrilla V, Petrillová M, Łyskowski A, Legáth J, Bocian A (2018) First Look at the Venom of Naja ashei. Molecules 23(3):609. https://doi.org/10.3390/molecules23030609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Huang HW, Liu BS, Chien KY, Chiang LC, Huang SY, Sung WC, Wu WG (2015) Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics 128:92–104. https://doi.org/10.1016/j.jprot.2015.07.015

    Article  CAS  PubMed  Google Scholar 

  114. Adamude FA, Dingwoke EJ, Abubakar MS, Ibrahim S, Mohamed G, Klein A, Sallau AB (2021) Proteomic analysis of three medically important Nigerian Naja (Naja haje, Naja katiensis and Naja nigricollis) snake venoms. Toxicon 197:24–32. https://doi.org/10.1016/j.toxicon.2021.03.014

    Article  CAS  PubMed  Google Scholar 

  115. Xu N, Zhao HY, Yin Y, Shen SS, Shan LL, Chen CX, Zhang YX, Gao JF, Ji X (2017) Combined venomics, antivenomics and venom gland transcriptome analysis of the monocoled cobra (Naja kaouthia) from China. J Proteomics 159:19–31. https://doi.org/10.1016/j.jprot.2017.02.018

    Article  CAS  PubMed  Google Scholar 

  116. Tan KY, Tan CH, Fung SY, Tan NH (2015) Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of Southeast Asia. J Proteomics 120:105–125. https://doi.org/10.1016/j.jprot.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  117. Liu CC, You CH, Wang PJ, Yu JS, Huang GJ, Liu CH, Hsieh WC, Lin CC (2017) Analysis of the efficacy of Taiwanese freeze-dried neurotoxic antivenom against Naja kaouthia, Naja siamensis and Ophiophagus hannah through proteomics and animal model approaches. PLoS Negl Trop Dis 11(12):e0006138. https://doi.org/10.1371/journal.pntd.0006138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Petras D, Sanz L, Segura A, Herrera M, Villalta M, Solano D, Vargas M, León G, Warrell DA, Theakston RD, Harrison RA, Durfa N, Nasidi A, Gutiérrez JM, Calvete JJ (2011) Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J Proteome Res 10(3):1266–1280. https://doi.org/10.1021/pr101040f

    Article  CAS  PubMed  Google Scholar 

  119. Lauridsen LP, Laustsen AH, Lomonte B, Gutiérrez JM (2017) Exploring the venom of the forest cobra snake: Toxicovenomics and antivenom profiling of Naja melanoleuca. J Proteomics 150:98–108. https://doi.org/10.1016/j.jprot.2016.08.024

    Article  CAS  PubMed  Google Scholar 

  120. Dutta S, Chanda A, Kalita B, Islam T, Patra A, Mukherjee AK (2017) Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: Correlation of venom composition with its biochemical and pharmacological properties. J Proteomics 156:29–39. https://doi.org/10.1016/j.jprot.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  121. Senji Laxme RR, Attarde S, Khochare S, Suranse V, Martin G, Casewell NR, Whitaker R, Sunagar K (2021) Biogeographical venom variation in the Indian spectacled cobra (Naja naja) underscores the pressing need for pan-India efficacious snakebite therapy. PLoS Negl Trop Dis 15(2):e0009150. https://doi.org/10.1371/journal.pntd.0009150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sintiprungrat K, Watcharatanyatip K, Senevirathne WD, Chaisuriya P, Chokchaichamnankit D, Srisomsap C, Ratanabanangkoon K (2016) A comparative study of venomics of Naja naja from India and Sri Lanka, clinical manifestations and antivenomics of an Indian polyspecific antivenom. J Proteomics 132:131–143. https://doi.org/10.1016/j.jprot.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  123. Wong KY, Tan CH, Tan KY, Quraishi NH, Tan NH (2018) Elucidating the biogeographical variation of the venom of Naja naja (spectacled cobra) from Pakistan through a venom-decomplexing proteomic study. J Proteomics 175:156–173. https://doi.org/10.1016/j.jprot.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  124. Asad MHHB, McCleary RJR, Salafutdinov I, Alam F, Shah HS, Bibi S, Ali A, Khalid S, Hasan SMF, Sabatier J-M, De Waard M, Hussian I, Rizvanov AA (2019) Proteomics study of Southern Punjab Pakistani cobra (Naja naja: formerly Naja naja karachiensis) venom. Toxicol Environ Chem 101(1–2):91–116. https://doi.org/10.1080/02772248.2019.1619743

    Article  CAS  Google Scholar 

  125. Manuwar A, Dreyer B, Böhmert A, Ullah A, Mughal Z, Akrem A, Ali SA, Schlüter H, Betzel C (2020) Proteomic investigations of two Pakistani Naja snake venoms species unravel the venom complexity, posttranslational modifications, and presence of extracellular vesicles. Toxins (Basel) 12(11):669. https://doi.org/10.3390/toxins12110669

    Article  CAS  PubMed  Google Scholar 

  126. Tan CH, Wong KY, Chong HP, Tan NH, Tan KY (2019) Proteomic insights into short neurotoxin-driven, highly neurotoxic venom of Philippine cobra (Naja philippinensis) and toxicity correlation of cobra envenomation in Asia. J Proteomics 206:103418. https://doi.org/10.1016/j.jprot.2019.103418

    Article  CAS  PubMed  Google Scholar 

  127. Wong KY, Tan KY, Tan NH, Tan CH (2021) A neurotoxic snake venom without phospholipase A2: proteomics and cross-neutralization of the venom from senegalese cobra, Naja senegalensis (Subgenus: Uraeus). Toxins (Basel) 13(1):60. https://doi.org/10.3390/toxins13010060

    Article  CAS  PubMed  Google Scholar 

  128. O’Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, Heizer GM, Komajda M, Massie BM, McMurray JJ, Nieminen MS, Reist CJ, Rouleau JL, Swedberg K, Adams KF Jr, Anker SD, Atar D, Battler A, Botero R, Bohidar NR, Butler J, Clausell N, Corbalán R, Costanzo MR, Dahlstrom U, Deckelbaum LI, Diaz R, Dunlap ME, Ezekowitz JA, Feldman D, Felker GM, Fonarow GC, Gennevois D, Gottlieb SS, Hill JA, Hollander JE, Howlett JG, Hudson MP, Kociol RD, Krum H, Laucevicius A, Levy WC, Méndez GF, Metra M, Mittal S, Oh BH, Pereira NL, Ponikowski P, Tang WH, Tanomsup S, Teerlink JR, Triposkiadis F, Troughton RW, Voors AA, Whellan DJ, Zannad F, Califf RM (2011) Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 365(1):32–43. https://doi.org/10.1056/NEJMoa1100171

    Article  CAS  PubMed  Google Scholar 

  129. Tan CH, Tan KY, Tan NH (2016) Revisiting Notechis scutatus venom: on shotgun proteomics and neutralization by the “bivalent” Sea Snake Antivenom. J Proteomics 144:33–38. https://doi.org/10.1016/j.jprot.2016.06.004

    Article  CAS  PubMed  Google Scholar 

  130. Kunalan S, Othman I, Syed Hassan S, Hodgson WC (2018) Proteomic characterization of two medically important malaysian snake venoms, Calloselasma rhodostoma (Malayan Pit Viper) and Ophiophagus hannah (King Cobra). Toxins (Basel) 10(11):434. https://doi.org/10.3390/toxins10110434

    Article  CAS  PubMed  Google Scholar 

  131. Herrera M, Fernández J, Vargas M, Villalta M, Segura Á, León G, Angulo Y, Paiva O, Matainaho T, Jensen SD, Winkel KD, Calvete JJ, Williams DJ, Gutiérrez JM (2012) Comparative proteomic analysis of the venom of the taipan snake, Oxyuranus scutellatus, from Papua New Guinea and Australia: role of neurotoxic and procoagulant effects in venom toxicity. J Proteomics 75(7):2128–2140. https://doi.org/10.1016/j.jprot.2012.01.006

    Article  CAS  PubMed  Google Scholar 

  132. Campos PF, Andrade-Silva D, Zelanis A, Paes Leme AF, Rocha MM, Menezes MC, Serrano SM, Junqueira-de-Azevedo Ide L (2016) Trends in the Evolution of Snake Toxins Underscored by an Integrative Omics Approach to Profile the Venom of the Colubrid Phalotris mertensi. Genome Biol Evol 8(8):2266–2287. https://doi.org/10.1093/gbe/evw149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Akunyili DN, Akubue PI (1986) Schumanniofoside, the antisnake venom principle from the stem bark of Schumanniophyton magnificum Harms. J Ethnopharmacol 18(2):167–172. https://doi.org/10.1016/0378-8741(86)90028-0

    Article  CAS  PubMed  Google Scholar 

  134. Bhattacharjee P, Bera I, Chakraborty S, Ghoshal N, Bhattacharyya D (2017) Aristolochic acid and its derivatives as inhibitors of snake venom L-amino acid oxidase. Toxicon 138:1–17. https://doi.org/10.1016/j.toxicon.2017.08.003

    Article  CAS  PubMed  Google Scholar 

  135. Fernandes CA, Cardoso FF, Cavalcante WG, Soares AM, Dal-Pai M, Gallacci M, Fontes MR (2015) Structural basis for the inhibition of a phospholipase A2-like toxin by caffeic and aristolochic acids. PLoS ONE 10(7):e0133370. https://doi.org/10.1371/journal.pone.0133370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Alam MI, Alam MA, Alam O, Nargotra A, Taneja SC, Koul S (2016) Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship. Eur J Med Chem 114:209–219. https://doi.org/10.1016/j.ejmech.2016.03.008

    Article  CAS  PubMed  Google Scholar 

  137. Gopi K, Anbarasu K, Renu K, Jayanthi S, Vishwanath BS (1860) Jayaraman G (2016) Quercetin-3-O-rhamnoside from Euphorbia hirta protects against snake Venom induced toxicity. Biochim Biophys Acta 7:1528–1540. https://doi.org/10.1016/j.bbagen.2016.03.031

    Article  CAS  Google Scholar 

  138. Muthusamy K, Chinnasamy S, Nagarajan S, Sivaraman T (2018) Computational and in vitro insights on snake venom phospholipase A2 inhibitor of phytocompound ikshusterol3-O-glucoside of Clematis gouriana Roxb. ex DC. J Biomol Struct Dyn 36(16):4197–4208. https://doi.org/10.1080/07391102.2017.1409653

    Article  CAS  PubMed  Google Scholar 

  139. Venkatesan C, Sarathi M, Balasubramanian G, Thomas J, Balachander V, Babu VS, Bilal SM, Majeed SA, Madan N, Raj NS, Vimal S, Nambi KS, Hameed AS (2014) Antivenom activity of triterpenoid (C34H68O2) from Leucas aspera Linn. against Naja naja naja venom induced toxicity: antioxidant and histological study in mice. Hum Exp Toxicol 33(4):336–359. https://doi.org/10.1177/0960327113494901

    Article  CAS  PubMed  Google Scholar 

  140. Adrião AAX, Dos Santos AO, de Lima EJSP, Maciel JB, Paz WHP, da Silva FMA, Pucca MB, Moura-da-Silva AM, Monteiro WM, Sartim MA, Koolen HHF (2022) Plant-derived toxin inhibitors as potential candidates to complement antivenom treatment in snakebite envenomations. Front Immunol 13:842576. https://doi.org/10.3389/fimmu.2022.842576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Liaqat A, Mallhi TH, Khan YH, Khokhar A, Chaman S, Ali M (2022) Anti-snake venom properties of medicinal plants: a comprehensive systematic review of literature. Brazil J Pharm Sci. https://doi.org/10.1590/s2175-97902022e191124

    Article  Google Scholar 

  142. Chandran N, Sivanandan S, Ck B (2016) Identification of lead compounds with cobra venom detoxification activity in Andrographis paniculata (Burm. F.) nees through in silico method. Int J Pharm Pharm Sci 8(7):212–217

    Google Scholar 

  143. Soni P, Bodakhe SH (2014) Antivenom potential of ethanolic extract of Cordia macleodii bark against Naja venom. Asian Pac J Trop Biomed 4(Suppl 1):S449–S454. https://doi.org/10.12980/APJTB.4.2014C1048

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ode OJ, Asuzu IU (2006) The anti-snake venom activities of the methanolic extract of the bulb of Crinum jagus (Amaryllidaceae). Toxicon 48(3):331–342. https://doi.org/10.1016/j.toxicon.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  145. Nisha N, Sreekumar S, Biju CK (2016) Identification of lead compounds with cobra venom detoxification activity in andrographis paniculata (Burm. F.) nees through in silico method. Int J Pharm Sci 8:212–217

    CAS  Google Scholar 

  146. Alam MI, Gomes A (2003) Snake venom neutralization by Indian medicinal plants (Vitex negundo and Emblica officinalis) root extracts. J Ethnopharmacol 86(1):75–80. https://doi.org/10.1016/s0378-8741(03)00049-7

    Article  CAS  PubMed  Google Scholar 

  147. Gupta YK, Peshin SS (2012) Do herbal medicines have potential for managing snake bite envenomation? Toxicol Int 19(2):89–99. https://doi.org/10.4103/0971-6580.97194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gunasekaran D, Sridhar J, Suryanarayanan V, Manimaran NC, Singh SK (2017) Molecular modeling and structural analysis of nAChR variants uncovers the mechanism of resistance to snake toxins. J Biomol Struct Dyn 35(8):1654–1671. https://doi.org/10.1080/07391102.2016.1190791

    Article  CAS  PubMed  Google Scholar 

  149. Dey A, De JN (2011) Traditional use of plants against snakebite in Indian subcontinent: a review of the recent literature. Afr J Tradit Complement Altern Med 9(1):153–174. https://doi.org/10.4314/ajtcam.v9i1.20

    Article  PubMed  PubMed Central  Google Scholar 

  150. Gomes A, Saha A, Chatterjee I, Chakravarty AK (2007) Viper and cobra venom neutralization by beta-sitosterol and stigmasterol isolated from the root extract of Pluchea indica Less. (Asteraceae). Phytomedicine 14(9):637–643. https://doi.org/10.1016/j.phymed.2006.12.020

    Article  CAS  PubMed  Google Scholar 

  151. Mukherjee AK, Doley R, Saikia D (2008) Isolation of a snake venom phospholipase A2 (PLA2) inhibitor (AIPLAI) from leaves of Azadirachta indica (Neem): mechanism of PLA2 inhibition by AIPLAI in vitro condition. Toxicon 51(8):1548–1553. https://doi.org/10.1016/j.toxicon.2008.03.021

    Article  CAS  PubMed  Google Scholar 

  152. Ambikabothy J, Ibrahim H, Ambu S, Chakravarthi S, Awang K, Vejayan J (2011) Efficacy evaluations of Mimosa pudica tannin isolate (MPT) for its anti-ophidian properties. J Ethnopharmacol 137(1):257–262. https://doi.org/10.1016/j.jep.2011.05.013

    Article  CAS  PubMed  Google Scholar 

  153. Deepa M, Veerabasappa Gowda T (2002) Purification and characterization of a glycoprotein inhibitor of toxic phospholipase from Withania somnifera. Arch Biochem Biophys 408(1):42–50. https://doi.org/10.1016/s0003-9861(02)00527-1

    Article  CAS  PubMed  Google Scholar 

  154. Chatterjee I, Chakravarty AK, Gomes A (2006) Daboia russellii and Naja kaouthia venom neutralization by lupeol acetate isolated from the root extract of Indian sarsaparilla Hemidesmus indicus R.Br. J Ethnopharmacol 106(1):38–43. https://doi.org/10.1016/j.jep.2005.11.031

    Article  CAS  PubMed  Google Scholar 

  155. Sakthivel G, Dey A, Nongalleima Kh, Chavali M, Rimal Isaac RS, Singh NS, Deb L (2013) In vitro and in vivo evaluation of polyherbal formulation against Russell’s Viper and Cobra Venom and Screening of bioactive components by docking studies. Evid Based Complement Alternat Med. https://doi.org/10.1155/2013/781216

    Article  PubMed  PubMed Central  Google Scholar 

  156. Gopi K, Renu K, Sannanaik Vishwanath B, Jayaraman G (2015) Protective effect of Euphorbia hirta and its components against snake venom induced lethality. J Ethnopharmacol 165:180–190. https://doi.org/10.1016/j.jep.2015.02.044

    Article  CAS  PubMed  Google Scholar 

  157. Félix-Silva J, Silva-Junior AA, Zucolotto SM, Fernandes-Pedrosa MF (2017) Medicinal plants for the treatment of local tissue damage induced by snake venoms: an overview from traditional use to pharmacological evidence. Evid Based Complement Alternat Med. https://doi.org/10.1155/2017/5748256

    Article  PubMed  PubMed Central  Google Scholar 

  158. Molander M, Nielsen L, Søgaard S, Staerk D, Rønsted N, Diallo D, Chifundera KZ, van Staden J, Jäger AK (2014) Hyaluronidase, phospholipase A2 and protease inhibitory activity of plants used in traditional treatment of snakebite-induced tissue necrosis in Mali, DR Congo and South Africa. J Ethnopharmacol 157:171–180. https://doi.org/10.1016/j.jep.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  159. Asad HB, Razi MT, Najam-Us-Saqib Q, Nasim SJ, Murtaza G, Hussain I (2013) Anti-venom potential of Pakistani medicinal plants: inhibition of anticoagulation activity of Naja naja karachiensis toxin. Curr Sci 105:1419–1424

    Google Scholar 

  160. Gutiérrez JM, Lomonte B (2013) Phospholipases A2: unveiling the secrets of a functionally versatile group of snake venom toxins. Toxicon 62:27–39. https://doi.org/10.1016/j.toxicon.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  161. Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111(10):6130–6185. https://doi.org/10.1021/cr200085w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M, Kumar RP, Kaur P, Kumar S, Dey S, Sharma S, Vrielink A, Betzel C, Takeda S, Arni RK, Singh TP, Kini RM (2011) Enzymatic toxins from snake venom: structural characterization and mechanism of catalysis. FEBS J 278(23):4544–4576. https://doi.org/10.1111/j.1742-4658.2011.08115.x

    Article  CAS  PubMed  Google Scholar 

  163. Ferraz CR, Arrahman A, Xie C, Casewell NR, Lewis RJ, Kool J, Cardoso FC (2019) Multifunctional toxins in snake venoms and therapeutic implications: From pain to hemorrhage and necrosis. Front Ecol Evol 7:218. https://doi.org/10.3389/fevo.2019.00218

    Article  Google Scholar 

  164. Olaoba OT, Karina Dos Santos P, Selistre-de-Araujo HS, Ferreira de Souza DH (2020) Snake Venom Metalloproteinases (SVMPs): a structure-function update. Toxicon X 7:100052. https://doi.org/10.1016/j.toxcx.2020.100052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Takeda S (2016) ADAM and ADAMTS family proteins and snake venom metalloproteinases: a structural overview. Toxins (Basel) 8(5):155. https://doi.org/10.3390/toxins8050155

    Article  CAS  PubMed  Google Scholar 

  166. Kini RM, Koh CY (2020) Snake venom three-finger toxins and their potential in drug development targeting cardiovascular diseases. Biochem Pharmacol 181:114105. https://doi.org/10.1016/j.bcp.2020.114105

    Article  CAS  PubMed  Google Scholar 

  167. Fry BG, Wüster W, Kini RM, Brusic V, Khan A, Venkataraman D, Rooney AP (2003) Molecular evolution and phylogeny of elapid snake venom three-finger toxins. J Mol Evol 57(1):110–129. https://doi.org/10.1007/s00239-003-2461-2

    Article  CAS  PubMed  Google Scholar 

  168. Tadokoro T, Modahl CM, Maenaka K, Aoki-Shioi N (2020) Cysteine-Rich Secretory Proteins (CRISPs) from venomous snakes: an overview of the functional diversity in a large and underappreciated superfamily. Toxins (Basel) 12(3):175. https://doi.org/10.3390/toxins12030175.PMID

    Article  CAS  PubMed  Google Scholar 

  169. Oliveira AL, Viegas MF, da Silva SL, Soares AM, Ramos MJ, Fernandes PA (2022) The chemistry of snake venom and its medicinal potential. Nat Rev Chem 6(7):451–469. https://doi.org/10.1038/s41570-022-00393-7

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Director, ICMR-National Institute of Traditional Medicine, Belagavi, and the Principal, KLE College of Pharmacy, Belagavi, KAHER, Belagavi for the encouragement and support of this work.

Funding

This study was funded by intramural research grants of ICMR-National Institute of Traditional Medicine, Belagavi, India.

Author information

Authors and Affiliations

Authors

Contributions

KH: Main worker, designing of work, writing the original draft. JD: Data curation and review. GHS: Data curation and review. VSP: Review and drafting. DRH: Supervision, Concept, Data curation and review. RC: Co-Supervision. HVH: Review. SR: Co-supervision and review.

Corresponding authors

Correspondence to Darasaguppe R. Harish or Rajashekar Chavan.

Ethics declarations

Conflict of interest

All the authors of this manuscript declare that they do not have any conflict of interest in any financial or non-financial means. All the authors of this manuscript have read and approved the final draft.

Ethical approval

This work doesn’t include any animal or human studies.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiremath, K., Dodakallanavar, J., Sampat, G.H. et al. Three finger toxins of elapids: structure, function, clinical applications and its inhibitors. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10734-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10734-3

Keywords

Navigation