Skip to main content
Log in

Copper-catalyzed C2-selective alkynylation of chromones via 1,4-conjugate addition

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Copper-catalyzed selective alkynylation with N-propargyl carboxamides as nucleophiles has been successfully developed for the synthesis of C2-functionalized chromanones. Under optimized reaction conditions, 21 examples were obtained in one-pot procedure through 1,4-conjugate addition. This protocol features readily available feedstocks, easy operations, and moderate to good yields, which provides viable access to pharmacologically active C2-functionalized chromanones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  1. Nicolaou KC, Pfefferkorn JA, Roecker AJ, Cao GQ, Barluenga S, Mitchell HJ (2000) Natural productlike combinatorial libraries based on privileged structures 1 General principles and solid-phase synthesis of benzopyrans. J Am Chem Soc 122(41):9939–9953. https://doi.org/10.1021/ja002033k

    Article  CAS  Google Scholar 

  2. Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21(4):539–573. https://doi.org/10.1039/B311404J

    Article  PubMed  CAS  Google Scholar 

  3. Lee H, Lee K, Jung JK, Cho J, Theodorakis EA (2005) Synthesis and evaluation of 6-hydroxy-7-methoxy-4-chromanone- and chroman-2-carboxamides as antioxidants. Bioorg Med Chem Lett 15(11):2745–2748. https://doi.org/10.1016/j.bmcl.2005.03.118

    Article  PubMed  CAS  Google Scholar 

  4. Fang SH, Lin KN, Huang XQ, Lu YB, Zhang WP, Wei EQ (2012) Nuclear translocation of cysteinyl leukotriene receptor 1 is involved in oxygen-glucose deprivation-induced damage to endothelial cells. Acta Pharmacol Sin 33(12):1511–1517. https://doi.org/10.1038/aps.2012.101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hadida S, Van Goor F, Zhou J, Arumugam V, McCartney J, Hazlewood A, Decker C, Negulescu P, Grootenhuis PD (2014) Discovery of N,-(2,4-di-tert-butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (VX-770, ivacaftor), a potent and orally bioavailable CFTR potentiator. J Med Chem 57(23):9776–9795. https://doi.org/10.1021/jm5012808

    Article  PubMed  CAS  Google Scholar 

  6. Kikuchi H, Isobe M, Sekiya M, Abe Y, Hoshikawa T, Ueda K, Kurata S, Katou Y, Oshima Y (2011) Structures of the dimeric and monomeric chromanones, gonytolides A–C, isolated from the fungus Gonytrichum sp. and their promoting activities of innate immune responses. Org Lett 13(17):4624–4627. https://doi.org/10.1021/ol2018449

    Article  PubMed  CAS  Google Scholar 

  7. Zhang W, Krohn K, Ullah Z, Florke U, Pescitelli G, Bari LD, Antus S, Kurtan T, Rheinheimer J, Draeger S, Schulz B (2008) New mono- and dimeric members of the secalonic acid family: blennolides A-–G isolated from the fungus Blennoria sp. Chem Eur J 14(16):4913–4923. https://doi.org/10.1002/chem.200800035

    Article  PubMed  CAS  Google Scholar 

  8. Krohn K, Michel A, Bahramsari R, Aust FU, HJ, Draeger S, Schulz B, Wray V, (1996) Biologically active metabolites from fungi 71); aposphaerin A and B two new chroman-4-ones from aposphaeria sp. Nat Prod Lett 8(1):43–48. https://doi.org/10.1080/10575639608043238

    Article  CAS  Google Scholar 

  9. Maezono SMB, Poudel TN, Xia L, Lee YR (2016) A green synthetic approach to synthesizing diverse 2-pyridones for their exceptional UV shielding functions. RSC Adv 6(85):82321–82329. https://doi.org/10.1039/C6RA18661K

    Article  ADS  Google Scholar 

  10. Sengupta T, Gayen KS, Pandit P, Maiti DK (2012) FeCl3·6H2O-Catalyzed intermolecular-cascade cyclization of acetoacetanilide: aldehyde-tuned synthesis to valuable 2-pyridone analogues. Chem Eur J 18(7):1905–1909. https://doi.org/10.1002/chem.201103354

    Article  PubMed  CAS  Google Scholar 

  11. Ibrahim MA, El-Gohary NM (2018) Domino reactions between 3-(6-methylchromonyl)acrylonitrile and nucleophilic reagents. Tetrahedron 74(4):512–518. https://doi.org/10.1016/j.tet.2017.12.030

    Article  CAS  Google Scholar 

  12. Lei J, Xu J, Tang DY, Shao JW, Li H, Chen ZZ, Xu ZG (2020) A concise and unexpected one-pot methodology for the synthesis of pyrazinone-fused pyridines. Org Chem Front 7(18):2657–2663. https://doi.org/10.1039/D0QO00590H

    Article  CAS  Google Scholar 

  13. Poomathi N, Perumala PT, Ramakrishna S (2017) An efficient and eco-friendly synthesis of 2-pyridones and functionalized azaxanthone frameworks via indium triflate catalyzed domino reaction. Green Chem 19(11):2524–2529. https://doi.org/10.1039/C6GC03440C

    Article  CAS  Google Scholar 

  14. Sultana S, Maezono SMB, Akhtar MS, Shim JJ, Wee YJ, Kim SH, Lee YR (2018) BF3·OEt2-Promoted annulation for substituted 2-arylpyridines as potent UV filters and antibacterial agents. Adv Synth Catal 360(4):751–761. https://doi.org/10.1002/adsc.201701137

    Article  CAS  Google Scholar 

  15. Liao JY, Yap WJ, Wu JE, Wong MW, Zhao Y (2017) Three-component reactions of isocyanoacetates, amines and 3-formylchromones initiated by an unexpected aza-Michael addition. Chem Commun 53(65):9067–9070. https://doi.org/10.1039/C7CC03468G

    Article  CAS  Google Scholar 

  16. Neo AG, López-GarcÍa L, Marcos CF (2014) Allylic amination of Passerini adducts application to the selective synthesis of chromone-substituted α-and γ-amino acid peptidic and retropeptidic units. RSC Adv 4(75):40044–40053. https://doi.org/10.1039/C4RA05719H

    Article  ADS  CAS  Google Scholar 

  17. Lepitre T, Biannic RL, Othman M, Lawson AM, Daïch A (2017) Metal-free cascade approach toward polysubstituted indolizines from chromone-based michael acceptors. Org Lett 19(8):1978–1981. https://doi.org/10.1021/acs.orglett.7b00309

    Article  PubMed  CAS  Google Scholar 

  18. Chand K, Prasad S, Tiwari RK, Shirazi AN, Kumar S, Parang K, Sharma SK (2014) Synthesis and evaluation of c-Src kinase inhibitory activity of pyridin-2(1H)-one derivatives. Bioorg Chem 53:75–82. https://doi.org/10.1016/j.bioorg.2014.02.001

    Article  PubMed  CAS  Google Scholar 

  19. Lei J, Li Y, Xu J, Tang DY, Shao JW, Li H, Chen ZZ, Xu ZG (2020) An acid-catalyzed 1,4-addition isocyanide-based multicomponent reaction in neat water. Green Chem 22(12):3716–3720. https://doi.org/10.1039/D0GC00652A

    Article  CAS  Google Scholar 

  20. Lei J, Li Y, He LJ, Luo YF, Tang DY, Yan W, Lin HK, Li H, Chen ZZ, Xu ZG (2020) Expeditious access of chromone analogues via a Michael addition-driven multicomponent reaction. Org Chem Front 7(8):987–992. https://doi.org/10.1039/D0QO00145G

    Article  CAS  Google Scholar 

  21. Lei J, Ding Y, Zhou HY, Gao XY, Cao YH, Tang DY, Li H, Xu ZG, Chen ZZ (2022) Practical synthesis of quinolone drugs via a novel TsCl-mediated domino reaction sequence. Green Chem 24(15):5755–5759. https://doi.org/10.1039/D2GC01689C

    Article  CAS  Google Scholar 

  22. Brown MK, Degrado SJ, Hoveyda AH (2005) Highly enantioselective Cu-catalyzed conjugate additions of dialkylzinc reagents to unsaturated furanones and pyranones: preparation of air-stable and catalytically active Cu–peptide complexes. Angew Chem Int Ed 44(33):5306–5310. https://doi.org/10.1002/anie.200501251

    Article  CAS  Google Scholar 

  23. Vila C, Hornillos V, Fañanás-Mastral M, Feringa BL (2013) Catalytic asymmetric conjugate addition of Grignard reagents to chromones. Chem Commun 49(53):5933–5935. https://doi.org/10.1039/C3CC43105C

    Article  CAS  Google Scholar 

  24. Hardman-Baldwin AM, Visco MD, Wieting JM, Stern C, Kondo S, Mattson AE (2016) Silanediol-catalyzed chromenone functionalization. Org Lett 18(15):3766–3769. https://doi.org/10.1021/acs.orglett.6b01783

    Article  PubMed  CAS  Google Scholar 

  25. DeRatt LG, Pappoppula M, Aponick A (2019) A facile enantioselective alkynylation of chromones. Angew Chem Int Ed 58(25):8416–8420. https://doi.org/10.1002/anie.201902405

    Article  CAS  Google Scholar 

  26. Guan Y, Attard JW, Mattson AE (2020) Copper bis(oxazoline)-catalyzed enantioselective alkynylation of benzopyrylium ions. Chem Eur J 26(8):1742–1747. https://doi.org/10.1002/chem.201904822

    Article  PubMed  CAS  Google Scholar 

  27. Guan Y, Buivydas TA, Lalisse RF, Attard JW, Ali R, Stern C, Hadad CM, Mattson AE (2021) Robust, enantioselective construction of challenging, biologically relevant tertiary ether stereocenters. ACS Catal 11(10):6325–6333. https://doi.org/10.1021/acscatal.1c01095

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Guan Y, Buivydas T, Lalisse RF, Ali R, Hadad CM, Mattson AE (2022) Enantioselective dearomative alkynylation of chromanones: ppportunities and obstacles. Synthesis 54(19):4210–4219. https://doi.org/10.1055/a-1811-8075

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Peshkov VA, Pereshivko OP, Van der Eycken EV (2012) A walk around the A3-coupling. Chem Soc Rev 41(10):3790–3807. https://doi.org/10.1039/C2CS15356D

    Article  PubMed  CAS  Google Scholar 

  30. Rokade BV, Barker J, Guiry PJ (2019) Development of and recent advances in asymmetric A3 coupling. Chem Soc Rev 48(18):4766–4790. https://doi.org/10.1039/c9cs00253g

    Article  PubMed  CAS  Google Scholar 

  31. Lei J, Li SQ, Luo YF, Tang DY, Zhou CH, Li H, Xu ZG, Chen ZZ (2022) Zn(OTf)2-Promoted isocyanide-based three-component reaction: direct access to 2-oxazolines and β-amino amides. J Org Chem 87(17):11888–11898. https://doi.org/10.1021/acs.joc.2c01437

    Article  PubMed  CAS  Google Scholar 

  32. Senadi GC, Hu WP, Hsiao JS, Vandavasi JK, Chen CY, Wang JJ (2012) Facile, selective, and regiocontrolled synthesis of oxazolines and oxazoles mediated by ZnI2 and FeCl3. Org Lett 14(17):4478–4481. https://doi.org/10.1021/ol301980g

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (51973042), Major Project of Natural Science Foundation of Guizhou Province [Grant No. QKHJC-ZK(2021) ZD048], the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201801321 and KJQN202101340), the Natural Science Foundation Project of CQ CSTSC (cstc2018jszx-cyzdX0023 and cstc2021jcyj-bsh0233), and Chongqing University of Arts and Sciences: Program for Talents Introduction (R2021FYX05 and P2022YX10). We would also like to thank Ms HZ. Liu for obtaining the LC/MS, HRMS, and NMR data.

Author information

Authors and Affiliations

Authors

Contributions

Yan-Wu Li carried out the experiments. Jie Lei wrote the manuscript with support from Zhong-Zhu Chen. Meng-Lan Lv supervised the project.

Corresponding authors

Correspondence to Jie Lei, Zhong-Zhu Chen or Meng-Lan Lv.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1797 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YW., Lei, J., Chen, ZZ. et al. Copper-catalyzed C2-selective alkynylation of chromones via 1,4-conjugate addition. Mol Divers 28, 125–131 (2024). https://doi.org/10.1007/s11030-023-10625-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-023-10625-7

Keywords

Navigation