Skip to main content
Log in

Molecular dynamics articulated multilevel virtual screening protocol to discover novel dual PPAR α/γ agonists for anti-diabetic and metabolic applications

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

PPARα and PPARγ are isoforms of the nuclear receptor superfamily which regulate glucose and lipid metabolism. Activation of PPARα and PPARγ receptors by exogenous ligands could transactivate the expression of PPARα and PPARγ-dependent genes, and thereby, metabolic pathways get triggered, which are helpful to ameliorate treatment for the type 2 diabetes mellitus, and related metabolic complications. Herein, by understanding the structural requirements for ligands to activate PPARα and PPARγ proteins, we developed a multilevel in silico-based virtual screening protocol to identify novel chemical scaffolds and further design and synthesize two distinct series of glitazone derivatives with advantages over the classical PPARα and PPARγ agonists. Moreover, the synthesized compounds were biologically evaluated for PPARα and PPARγ transactivation potency from nuclear extracts of 3T3-L1 cell. Furthermore, glucose uptake assay on L6 cells confirmed the potency of the synthesized compounds toward glucose regulation. Percentage lipid-lowering potency was also assessed through triglyceride estimate from 3T3-L1 cell extracts. Results suggested the ligand binding mode was in orthosteric fashion as similar to classical agonists. Thus molecular docking and molecular dynamics (MD) simulation experiments were executed to validate our hypothesis on mode of ligands binding and protein complex stability. Altogether, the present study developed a newer protocol for virtual screening and enables to design of novel glitazones for activation of PPARα and PPARγ-mediated pathways. Accordingly, present approach will offer benefit as a therapeutic strategy against type 2 diabetes mellitus and associated metabolic complications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yoon K, Lee J, Kim J et al (2006) Epidemic obesity and type 2 diabetes in Asia. Lancet 368(9548):1681–1688. https://doi.org/10.1016/S0140-6736(06)69703-1

    Article  PubMed  Google Scholar 

  2. Schulman IG (2010) Nuclear receptors as drug targets for metabolic disease. Adv Drug Deliv Rev 62(13):1307–1315. https://doi.org/10.1016/j.addr.2010.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Swanson HI, Wada T, Xie W et al (2013) Role of nuclear receptors in lipid dysfunction and obesity-related diseases. Drug Metab Dispos 41(1):1–11. https://doi.org/10.1124/dmd.112.048694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dixon ED, Nardo AD, Claudel T, Trauner M (2021) The role of lipid sensing nuclear receptors (PPARs and LXR) and metabolic lipases in obesity. Diabetes NAFLD Genes (Basel) 12(5):645. https://doi.org/10.3390/genes12050645

    Article  CAS  PubMed  Google Scholar 

  5. Zhang C, Zhang B, Zhang X et al (2020) Targeting orphan nuclear receptors NR4As for energy homeostasis and diabetes. Front Pharmacol 11:1–11. https://doi.org/10.3389/fphar.2020.587457

    Article  CAS  Google Scholar 

  6. Abdul M, Khan B, Hashim MJ et al (2020) Epidemiology of type 2 diabetes—global burden of disease and forecasted trends. J Epidemiol Glob Health 10(1):107–111. https://doi.org/10.2991/jegh.k.191028.001

    Article  Google Scholar 

  7. Galicia-Garcia U, Benito-Vicente A, Jebari S et al (2020) Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 21(17):1–34. https://doi.org/10.3390/ijms21176275

    Article  CAS  Google Scholar 

  8. Rangwala SM, Lazar MA (2004) Peroxisome proliferator-activated receptor g in diabetes and metabolism. Trends Pharmacol Sci 25(6):331–336. https://doi.org/10.1016/j.tips.2004.03.012

    Article  CAS  PubMed  Google Scholar 

  9. O’Brien T, Nguyen TT, Zimmerman BR (1998) Hyperlipidemia and diabetes mellitus. Mayo Clin Proc 73(10):969–976. https://doi.org/10.4065/73.10.969

    Article  PubMed  Google Scholar 

  10. Fiévet C, Fruchart J-C, Staels B (2006) PPAR α and PPAR γ dual agonists for the treatment of type 2 diabetes and the metabolic syndrome. Curr Opin Pharmacol 6(6):606–614. https://doi.org/10.1016/j.coph.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  11. Bajaj M, Suraamornkul S, Hardies LJ, Glass L (2007) Effects of peroxisome proliferator-activated receptor (PPAR) - α and PPAR- γ agonists on glucose and lipid metabolism in patients with type 2 diabetes mellitus. Diabetologia 50:1723–1731. https://doi.org/10.1007/s00125-007-0698-9

    Article  CAS  PubMed  Google Scholar 

  12. Kaur P, Rafiq Z, Bhat S et al (2020) Synthesis and evaluation of new 1, 2, 4-oxadiazole based trans—acrylic acid derivatives as potential PPAR-alpha/gamma dual agonist. Bioorg Chem 100:103867. https://doi.org/10.1016/j.bioorg.2020.103867

    Article  CAS  PubMed  Google Scholar 

  13. Yasmin S, Jayaprakash V (2017) Thiazolidinediones and PPAR orchestra as antidiabetic agents: from past to present. Eur J Med Chem 126:879–893. https://doi.org/10.1016/j.ejmech.2016.12.020

    Article  CAS  PubMed  Google Scholar 

  14. Darwish KM, Salama I, Mostafa S et al (2018) Synthesis, biological evaluation, and molecular docking investigation of benzhydrol- and indole-based dual PPAR-γ/FFAR1 agonists. Bioorganic Med Chem Lett 28(9):1595–1602. https://doi.org/10.1016/j.bmcl.2018.03.051

    Article  CAS  Google Scholar 

  15. Lillich FF, Imig JD, Proschak E (2021) Multi-target approaches in metabolic syndrome. Front Pharmacol 11:1–18. https://doi.org/10.3389/fphar.2020.554961

    Article  CAS  Google Scholar 

  16. González-álvarez H, Bravo-Jiménez A, Martínez-Arellanes M et al (2021) In silico-based design and in vivo evaluation of an anthranilic acid derivative as a multitarget drug in a diet-induced metabolic syndrome model. Pharmaceuticals 14(9):1–18. https://doi.org/10.3390/ph14090914

    Article  CAS  Google Scholar 

  17. Feng X, Ding T, Liu Y et al (2021) In-silico Identification of peroxisome proliferator- activated receptor (PPAR)α/γ agonists from Ligand Expo Components database. J Biomol Struct Dyn 39(5):1853–1864. https://doi.org/10.1080/07391102.2020.1745279

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Feng X, Jia W et al (2020) Virtual identification of novel PPARα/γ dual agonists by 3D-QSAR, molecule docking and molecular dynamics studies. J Biomol Struct Dyn 38(9):2672–2685. https://doi.org/10.1080/07391102.2019.1656110

    Article  CAS  PubMed  Google Scholar 

  19. Nath V, Agrawal R, Kumar V (2020) Structure based docking and molecular dynamics studies: peroxisome proliferator-activated receptors –α/γ dual agonists for treatment of metabolic disorders. J Biomol Struct Dyn 38(2):511–523. https://doi.org/10.1080/07391102.2019.1581089

    Article  CAS  PubMed  Google Scholar 

  20. Monsalve FA, Pyarasani RD, Delgado-Lopez F, Moore-Carrasco R (2013) Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators Inflamm 549627:1–18. https://doi.org/10.1155/2013/549627

    Article  CAS  Google Scholar 

  21. Corrales P, Vidal-Puig A, Medina-Gómez G (2018) PPARS and metabolic disorders associated with challenged adipose tissue plasticity. Int J Mol Sci 19(7):1–16. https://doi.org/10.3390/ijms19072124

    Article  CAS  Google Scholar 

  22. Blaschke F, Takata Y, Caglayan E et al (2006) Obesity, peroxisome proliferator-activated receptor, and atherosclerosis in type 2 diabetes. Arterioscler Thromb Vasc Biol 26:28–40. https://doi.org/10.1161/01.ATV.0000191663.12164.77

    Article  CAS  PubMed  Google Scholar 

  23. Tsukidate T, Li Q, Hang HC (2020) Nuclear receptor chemical reporter enables domain-specific analysis of ligands in mammalian cells. ACS Chem Biol 15(9):2324–2330. https://doi.org/10.1021/acschembio.0c00432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brust R, Lin H, Fuhrmann J et al (2017) Modification of the orthosteric PPARγ covalent antagonist scaffold yields an improved dual-site allosteric inhibitor. ACS Chem Biol 12(4):969–978. https://doi.org/10.1021/acschembio.6b01015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chandra V, Huang P, Hamuro Y et al (2008) Structure of the intact PPAR-γ-RXR-α nuclear receptor complex on DNA. Nature 456:350–356. https://doi.org/10.1038/nature07413

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kumar S, Suleski MP, Markov GJ et al (2009) Positional conservation and amino acids shape the correct diagnosis and population frequencies of benign and damaging personal amino acid mutations. Genome Res 19:1562–1569. https://doi.org/10.1101/gr.091991.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biro JC (2006) Amino acid size, charge, hydropathy indices and matrices for protein structure analysis. Theor Biol Med Model 3:1–12. https://doi.org/10.1186/1742-4682-3-15

    Article  CAS  Google Scholar 

  28. Sarwar N, Gao P, Kondapally Seshasai SR et al (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375(9733):2215–2222. https://doi.org/10.1016/S0140-6736(10)60484-9

    Article  CAS  PubMed  Google Scholar 

  29. Stadler LKJ, Farooqi IS (2017) A new drug target for type 2 diabetes. Cell 170(1):12–14. https://doi.org/10.1016/j.cell.2017.06.024

    Article  CAS  PubMed  Google Scholar 

  30. Karalliedde J, Buckingham RE (2007) Thiazolidinediones and their fluid-related adverse effects: facts, fiction and putative management strategies. Drug Saf 30:741–753. https://doi.org/10.2165/00002018-200730090-00002

    Article  CAS  PubMed  Google Scholar 

  31. Hussein Z, Wentworth JM, Nankervis AJ et al (2004) Effectiveness and side effects of thiazolidinediones for type 2 diabetes: real-life experience from a tertiary hospital. Med J Aust 181(10):536–539. https://doi.org/10.5694/j.1326-5377.2004.tb06441.x

    Article  PubMed  Google Scholar 

  32. Hedrington MS, Davis SN (2018) Peroxisome proliferator-activated receptor alpha-mediated drug toxicity in the liver. Expert Opin Drug Metab Toxicol 14(7):671–677. https://doi.org/10.1080/17425255.2018.1483337

    Article  CAS  PubMed  Google Scholar 

  33. Khuchua Z, Glukhov AI, Strauss AW, Javadov S (2018) Elucidating the beneficial role of PPAR agonists in cardiac diseases. Int J Mol Sci 19(11):1–17. https://doi.org/10.3390/ijms19113464

    Article  CAS  Google Scholar 

  34. Shi R, Zhao L, Qi Y (2018) The effect of fenofibrate on early retinal nerve fiber layer loss in type 2 diabetic patients: a case-control study. BMC Ophthalmol 18(1):100. https://doi.org/10.1186/s12886-018-0769-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rubenstrunk A, Hanf R, Hum DW et al (2007) Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta 1771(8):1065–1081. https://doi.org/10.1016/j.bbalip.2007.02.003

    Article  CAS  PubMed  Google Scholar 

  36. Balakumar P, Mahadevan N, Sambathkumar R (2019) A contemporary overview of PPARα/γ dual agonists for the management of diabetic dyslipidemia. Curr Mol Pharmacol 12(3):195–201. https://doi.org/10.2174/1874467212666190111165015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li J, Kennedy LJ, Shi Y et al (2010) Discovery of an oxybenzylglycine based peroxisome proliferator activated receptor α selective agonist 2-((3-((2-(4-chlorophenyl)-5-methyloxazol-4- yl)methoxy)benzyl)(methoxycarbonyl)amino)acetic acid (BMS-687453). J Med Chem 53(7):2854–2864. https://doi.org/10.1021/jm9016812

    Article  CAS  PubMed  Google Scholar 

  38. Nolte RT, Wisely GB, Westin S et al (1998) Ligand binding and co-activator assembly of the peroxisome proliferator- activated receptor-γ. Nature 395:137–143. https://doi.org/10.1038/25931

    Article  CAS  PubMed  Google Scholar 

  39. Chen JH, Linstead E, Swamidass SJ et al (2007) ChemDB update—full-text search and virtual chemical space. Bioinformatics 23(17):2348–2351. https://doi.org/10.1093/bioinformatics/btm341

    Article  CAS  PubMed  Google Scholar 

  40. Fu J, Si P, Zheng M et al (2012) Discovery of new non-steroidal FXR ligands via a virtual screening workflow based on Phase shape and induced fit docking. Bioorg Med Chem Lett 22(22):6848–6853. https://doi.org/10.1016/j.bmcl.2012.09.045

    Article  CAS  PubMed  Google Scholar 

  41. Kowalska M, Fijałkowski Ł, Nowaczyk A (2018) The biological activity assessment of potential drugs acting on cardiovascular system using Lipinski and Veber Rules. J Educ Heal Sport 8(12):184–191. https://doi.org/10.5281/zenodo.2066519

    Article  Google Scholar 

  42. Chen X, Li H, Tian L et al (2020) Analysis of the physicochemical properties of acaricides based on Lipinski’s rule of five. J Comput Biol 27(9):1–10. https://doi.org/10.1089/cmb.2019.0323

    Article  CAS  Google Scholar 

  43. Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31(4):671–690. https://doi.org/10.1002/jcc.21367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rao SN, Head MS, Kulkarni A et al (2007) Validation studies of the site-directed docking program LibDock. J Chem Inf Model 47(6):2159–2171. https://doi.org/10.1021/ci6004299

    Article  CAS  PubMed  Google Scholar 

  45. Wu G, Robertson DH, Brooks CL III, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER - A CHARMm based MD docking program. J Comput Chem 24(13):1549–1562. https://doi.org/10.1002/jcc.10306

    Article  CAS  PubMed  Google Scholar 

  46. Markt P, Petersen RK, Flindt EN et al (2008) Discovery of novel PPAR ligands by a virtual screening approach based on pharmacophore modeling, 3D shape, and electrostatic similarity screening. J Med Chem 51(20):6303–6317. https://doi.org/10.1021/jm800128k

    Article  CAS  PubMed  Google Scholar 

  47. Toledo Warshaviak D, Golan G, Borrelli KW et al (2014) Structure-based virtual screening approach for discovery of covalently bound ligands. J Chem Inf Model 54(7):1941–1950. https://doi.org/10.1021/ci500175r

    Article  CAS  PubMed  Google Scholar 

  48. Xu X, Huang M, Zou X (2018) Docking-based inverse virtual screening: methods, applications, and challenges. Biophys Reports 4:1–16. https://doi.org/10.1007/s41048-017-0045-8

    Article  CAS  Google Scholar 

  49. Melo-Filho C, Braga R, Andrade C (2014) 3D-QSAR approaches in drug design: perspectives to generate reliable CoMFA models. Curr Comput Aided-Drug Des 10(2):148–159. https://doi.org/10.2174/1573409910666140410111043

    Article  CAS  PubMed  Google Scholar 

  50. Cheng Y, Zhou M, Tung CH et al (2010) Studies on two types of PTP1B inhibitors for the treatment of type 2 diabetes: Hologram QSAR for OBA and BBB analogues. Bioorganic Med Chem Lett 20(11):3329–3337. https://doi.org/10.1016/j.bmcl.2010.04.033

    Article  CAS  Google Scholar 

  51. Freitas RF, Oprea TI, Montanari C, a. (2008) 2D QSAR and similarity studies on cruzain inhibitors aimed at improving selectivity over cathepsin L. Bioorganic Med Chem 16(2):838–853. https://doi.org/10.1016/j.bmc.2007.10.048

    Article  CAS  Google Scholar 

  52. Daura X, Gademann K, Jaun B et al (1999) Peptide folding: when simulation meets experiment. Angew Chem Int Ed 38:236–240. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2%3c236::AID-ANIE236%3e3.0.CO;2-M

    Article  CAS  Google Scholar 

  53. Lyubartsev AP, Laaksonen A (2000) M. DynaMix—a scalable portable parallel MD simulation package for arbitrary molecular mixtures. Comput Phys Commun 128(3):565–589. https://doi.org/10.1016/S0010-4655(99)00529-9

  54. Tang YW, Huang Z, Wang X, Zeng XC (2006) Molecular dynamics simulations of thermal conductivity of silicon nanotubes. J Comput Theor Nanosci 3(5):824–829. https://doi.org/10.1166/jctn.2006.023

    Article  CAS  Google Scholar 

  55. Yamamoto N, Kawasaki K, Sato T et al (2008) A nonradioisotope, enzymatic microplate assay for in vivo evaluation of 2-deoxyglucose uptake in muscle tissue. Anal Biochem 375(2):397–399. https://doi.org/10.1016/j.ab.2008.01.013

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto N, Sato T, Kawasaki K et al (2006) A nonradioisotope, enzymatic assay for 2-deoxyglucose uptake in L6 skeletal muscle cells cultured in a 96-well microplate. Anal Biochem 351(1):139–145. https://doi.org/10.1016/j.ab.2005.12.011

    Article  CAS  PubMed  Google Scholar 

  57. Das MS, Devi G (2015) In vitro cytotoxicity and glucose uptake activity of fruits of terminalia bellirica in Vero, L-6 and 3T3 cell lines. J Appl Pharm Sci 5(12):92–95. https://doi.org/10.7324/JAPS.2015.501215

    Article  Google Scholar 

  58. Watanabe K, Matsumoto A, Tsuda H, Iwamoto S (2021) N4BP2L1 interacts with dynactin and contributes to GLUT4 trafficking and glucose uptake in adipocytes. J Diabetes Investig 12:1958–1966. https://doi.org/10.1111/jdi.13623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chen D, Wang H, Chen J et al (2018) MicroRNA-129-5p regulates glycolysis and cell proliferation by targeting the glucose transporter SLC2A3 in gastric cancer cells. Front Pharmacol 9:1–10. https://doi.org/10.3389/fphar.2018.00502

    Article  CAS  Google Scholar 

  60. Barik SK, Russell WR, Moar KM et al (2020) The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters. J Nutr Biochem 78:108325. https://doi.org/10.1016/j.jnutbio.2019.108325

    Article  CAS  PubMed  Google Scholar 

  61. Müller MS, Fouyssac M, Taylor CW (2018) Effective Glucose uptake by human astrocytes requires its sequestration in the endoplasmic reticulum by glucose-6-phosphatase-β. Curr Biol 28(21):3481–3486. https://doi.org/10.1016/j.cub.2018.08.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Karunakaran RS, Lokanatha O, Swamy GM, Miranda V (2021) Anti-obesity and lipid lowering activity of bauhiniastatin-1 is mediated through PPAR- γ/AMPK expressions in diet-induced obese rat model. Front Pharmacol 12:1–13. https://doi.org/10.3389/fphar.2021.704074

    Article  CAS  Google Scholar 

  63. Iwamoto K, Kamo S, Takada Y et al (2018) Soyasapogenols reduce cellular triglyceride levels in 3T3-L1 mouse adipocyte cells by accelerating triglyceride lipolysis. Biochem Biophys Reports 16:44–49. https://doi.org/10.1016/j.bbrep.2018.09.006

    Article  Google Scholar 

  64. Feng C, Li D, Chen M et al (2019) Citreoviridin induces myocardial apoptosis through PPAR- γ -mTORC2- mediated autophagic pathway and the protective effect of thiamine and selenium. Chem Biol Interact 311:108795. https://doi.org/10.1016/j.cbi.2019.108795

    Article  CAS  PubMed  Google Scholar 

  65. Jin M, Lai Y, Zhang W (2020) Effects of peptidoglycan on the development of steatohepatitis. BBA 1865:158595. https://doi.org/10.1016/j.bbalip.2019.158595

    Article  CAS  Google Scholar 

  66. Gersch M, Gladkova C, Schubert AF et al (2017) Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nat Struct Mol Biol 24:920–930. https://doi.org/10.1038/nsmb.3475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Van Der Spoel D, Lindahl E, Hess B et al (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  68. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GRGMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447. https://doi.org/10.1021/ct700301q

    Article  CAS  PubMed  Google Scholar 

  69. Abraham MJ, Murtola T, Schulz R et al (2015) Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  70. Larsson P, Cuendet MA, Hess B, Lindahl E (2010) Implementation of the CHARMM force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water. J Chem Theory Comput 6(2):459–466. https://doi.org/10.1021/ct900549r

    Article  CAS  PubMed  Google Scholar 

  71. Mark P, Nilsson L (2001) Structure and dynamics of the TIP3P, SPC, and SPC / E water models at 298 K. J Phys Chem A 105(43):9954–9960. https://doi.org/10.1021/jp003020w

    Article  CAS  Google Scholar 

  72. Wang T, Brudvig GW, Batista VS (2010) Study of proton coupled electron transfer in a biomimetic dimanganese water oxidation catalyst with terminal water ligands. J Chem Theory Comput 6(8):2395–2401. https://doi.org/10.1021/ct1002658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mandal SP, Garg A, Prabitha P et al (2018) Novel glitazones as PPARγ agonists: molecular design, synthesis, glucose uptake activity and 3D QSAR studies. Chem Cent J 12:141. https://doi.org/10.1186/s13065-018-0508-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Leach AR, Gillet VJ, Lewis RA, Taylor R (2010) Three-dimensional pharmacophore methods in drug discovery. J Med Chem 53(2):539–558. https://doi.org/10.1021/jm900817u

    Article  CAS  PubMed  Google Scholar 

  75. Yang S (2010) Pharmacophore modeling and applications in drug discovery : challenges and recent advances. Drug Discov Today 15:444–450. https://doi.org/10.1016/j.drudis.2010.03.013

    Article  CAS  PubMed  Google Scholar 

  76. Heravi MM, Ghods A, Bakhtiari K, Derikvand F (2010) Zn[(L)proline]2: an efficient catalyst for the synthesis of biologically active pyrano[2,3-d]pyrimidine derivatives. Synth Commun 40(13):1927–1931. https://doi.org/10.1080/00397910903174390

    Article  CAS  Google Scholar 

  77. Singh I, Rani R, Luxami V, Paul K (2019) Synthesis of 5-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)benzylidene)thiazolidine-2,4-dione as promising DNA and serum albumin-binding agents and evaluation of antitumor activity. Eur J Med Chem 166:267–280. https://doi.org/10.1016/j.ejmech.2019.01.053

    Article  CAS  PubMed  Google Scholar 

  78. Stepanek O, Hin N, Thomas AG et al (2019) Neutral sphingomyelinase 2 inhibitors based on the 4-(1H-imidazol-2-yl)-2,6-dialkoxyphenol scaffold. Eur J Med Chem 170:276–289. https://doi.org/10.1016/j.ejmech.2019.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Frédérick R, Robert S, Charlier C et al (2007) Mechanism-based thrombin inhibitors: design, synthesis, and molecular docking of a new selective 2-oxo-2H-1-benzopyran derivative. J Med Chem 50(15):3645–3650. https://doi.org/10.1021/jm061368v

    Article  CAS  PubMed  Google Scholar 

  80. Mandal S, Br PK, Alam T et al (2022) Novel imidazole phenoxyacetic acids as inhibitors of USP30 for neuroprotection implication via the ubiquitin-Rho-110 fluorometric assay: design, synthesis, and in silico and biochemical assays. ACS Chem Neurosci 13(9):1433–1445. https://doi.org/10.1021/acschemneuro.2c00076

    Article  CAS  PubMed  Google Scholar 

  81. Lin Y, Huang J, Wu C et al (2002) Design, synthesis, and evaluation of postulated transient intermediate and substrate analogues as inhibitors of 4-hydroxyphenylpyruvate dioxygenase. Bioorg Med Chem Lett 12(13):1709–1713. https://doi.org/10.1016/S0960-894X(02)00291-3

    Article  CAS  PubMed  Google Scholar 

  82. Trapero A, Pacitto A, Singh V et al (2018) A fragment-based approach to targeting inosine-5 ´—monophosphate dehydrogenase ( IMPDH ) from mycobacterium tuberculosis. J Med Chem 61(7):2806–2822. https://doi.org/10.1021/acs.jmedchem.7b01622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang Y, Wu G, Xu X et al (2021) Palladium-Catalyzed β-C(sp 3)-H Arylation of aliphatic ketones enabled by a transient directing group. J Org Chem 86(10):7296–7303. https://doi.org/10.1021/acs.joc.1c00646

    Article  CAS  PubMed  Google Scholar 

  84. He G, Song Q, Wang J et al (2020) Design, synthesis and biological evaluation of N -hydroxy- aminobenzyloxyarylamide analogues as novel selective κ opioid receptor antagonists. Bioorg Med Chem Lett 30(13):127236. https://doi.org/10.1016/j.bmcl.2020.127236

    Article  CAS  PubMed  Google Scholar 

  85. Lin H, Pan X, Barsamian AL et al (2019) Native directed site-selective δ - C(sp 3)-H and δ-C(sp 2)-H Arylation of primary amines. ACS Catal 9(6):4887–4891. https://doi.org/10.1021/acscatal.8b04927

    Article  CAS  Google Scholar 

  86. Prem A, Mandal S, Prabitha P, Faizan S (2022) Rational design, molecular docking, dynamic simulation, synthesis, PPAR- γ competitive binding and transcription analysis of novel glitazones. J Mol Struct 1265:133354. https://doi.org/10.1016/j.molstruc.2022.133354

    Article  CAS  Google Scholar 

  87. Musser JH, Kubrak DM, Chang J, et al (1987) Leukotriene D4 antagonists and 5-lipoxygenase inhibitors. Synthesis of benzoheterocyclic [(methoxyphenyl)amino] oxoalkanoic acid esters. J Med Chem 30(2):400–405. https://doi.org/10.1021/jm00385a024

  88. Lundin A, Hasenson M, Persson J, Pousette A (1986) Estimation of biomass in growing cell lines by adenosine triphosphate assay. Methods Enzymol 133:27–42. https://doi.org/10.1016/0076-6879(86)33053-2

    Article  CAS  PubMed  Google Scholar 

  89. Gonzalez RJ, Tarloff JB (2001) Evaluation of hepatic subcellular fractions for Alamar blue and MTT reductase activity. Toxicol Vitr 15(3):257–259. https://doi.org/10.1016/S0887-2333(01)00014-5

    Article  CAS  Google Scholar 

  90. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277. https://doi.org/10.1016/0022-1759(86)90368-6

  91. Nisha CM, Kumar A, Nair P et al (2016) Molecular docking and in silico ADMET study reveals acylguanidine 7a as a potential inhibitor of β -secretase. Adv Bioinformatics 2016:1–6. https://doi.org/10.1155/2016/9258578

    Article  CAS  Google Scholar 

  92. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:1–13. https://doi.org/10.1038/srep42717

    Article  Google Scholar 

  93. Dong J, Wang NN, Yao ZJ et al (2018) Admetlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform 10:1–11. https://doi.org/10.1186/s13321-018-0283-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Subhankar Mandal is thankful to DST INSPIRE, Department of Science and Technology (DST), New Delhi, India, for doctoral grant and financial support in the form of Research Fellowship (DST/INSPIRE Fellowship/2016/IF160630). Authors are thankful to the management, JSS academy of higher education and research, Mysore, for providing necessary support.

Funding

Funding was provided by DST Inspire India (Grant Number IF160630).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. R. Prashantha Kumar.

Ethics declarations

Conflict of interest

Authors declare no competing interest in any form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 894 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Faizan, S., Raghavendra, N.M. et al. Molecular dynamics articulated multilevel virtual screening protocol to discover novel dual PPAR α/γ agonists for anti-diabetic and metabolic applications. Mol Divers 27, 2605–2631 (2023). https://doi.org/10.1007/s11030-022-10571-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10571-w

Keywords

Navigation